开放世界中时间序列早期分类的基线

Junwei Lv, Xuegang Hu
{"title":"开放世界中时间序列早期分类的基线","authors":"Junwei Lv, Xuegang Hu","doi":"10.1109/COMPSAC54236.2022.00055","DOIUrl":null,"url":null,"abstract":"Early classification of time series aims to accurately predict the class label of a time series as early as possible, which is significant but challenging in many time-sensitive applications. Existing early classification methods hold a basic closed-world assumption that the classifier must have seen the classes of test samples. However, new samples that do not belong to any trained class may appear in the real world. In this paper, we first address the early classification in an open world and design two detectors to identify which known class or unknown class a sample belongs to. Specifically, based on the observed data, an early known-class detector is designed to determine the known-class confidence and an early unknown-class detector is designed to determine the unknown-class confidence according to the Minimum Reliable Length (MRL) and the Weibull distribution of each class. Experimental results evaluated on real-world datasets demonstrate that the proposed model can identify samples of unknown and known classes accurately and early.","PeriodicalId":330838,"journal":{"name":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Baseline for Early Classification of Time Series in An Open World\",\"authors\":\"Junwei Lv, Xuegang Hu\",\"doi\":\"10.1109/COMPSAC54236.2022.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early classification of time series aims to accurately predict the class label of a time series as early as possible, which is significant but challenging in many time-sensitive applications. Existing early classification methods hold a basic closed-world assumption that the classifier must have seen the classes of test samples. However, new samples that do not belong to any trained class may appear in the real world. In this paper, we first address the early classification in an open world and design two detectors to identify which known class or unknown class a sample belongs to. Specifically, based on the observed data, an early known-class detector is designed to determine the known-class confidence and an early unknown-class detector is designed to determine the unknown-class confidence according to the Minimum Reliable Length (MRL) and the Weibull distribution of each class. Experimental results evaluated on real-world datasets demonstrate that the proposed model can identify samples of unknown and known classes accurately and early.\",\"PeriodicalId\":330838,\"journal\":{\"name\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC54236.2022.00055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC54236.2022.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间序列的早期分类旨在尽早准确地预测时间序列的类别标签,这在许多时间敏感的应用中具有重要意义,但也具有挑战性。现有的早期分类方法持有一个基本的封闭世界假设,即分类器必须看到测试样本的类别。然而,不属于任何训练类的新样本可能会出现在现实世界中。在本文中,我们首先解决了开放世界中的早期分类问题,并设计了两个检测器来识别样本属于已知类还是未知类。具体而言,基于观测数据,根据最小可靠长度(MRL)和各类的威布尔分布,设计早期已知类检测器来确定已知类置信度,设计早期未知类检测器来确定未知类置信度。在实际数据集上的实验结果表明,该模型能够准确、早期地识别未知和已知类别的样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Baseline for Early Classification of Time Series in An Open World
Early classification of time series aims to accurately predict the class label of a time series as early as possible, which is significant but challenging in many time-sensitive applications. Existing early classification methods hold a basic closed-world assumption that the classifier must have seen the classes of test samples. However, new samples that do not belong to any trained class may appear in the real world. In this paper, we first address the early classification in an open world and design two detectors to identify which known class or unknown class a sample belongs to. Specifically, based on the observed data, an early known-class detector is designed to determine the known-class confidence and an early unknown-class detector is designed to determine the unknown-class confidence according to the Minimum Reliable Length (MRL) and the Weibull distribution of each class. Experimental results evaluated on real-world datasets demonstrate that the proposed model can identify samples of unknown and known classes accurately and early.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Category-Aware App Permission Recommendation based on Sparse Linear Model Early Detection of At-Risk Students in a Calculus Course Apple-YOLO: A Novel Mobile Terminal Detector Based on YOLOv5 for Early Apple Leaf Diseases A Safe Route Recommendation Method Based on Driver Characteristics from Telematics Data GSDNet: An Anti-interference Cochlea Segmentation Model Based on GAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1