基于blmab的多智能体多核gpu模拟近似优化初探

Y. Sano, Yoshiaki Kadono, Naoki Fukuta
{"title":"基于blmab的多智能体多核gpu模拟近似优化初探","authors":"Y. Sano, Yoshiaki Kadono, Naoki Fukuta","doi":"10.1109/SOCA.2014.37","DOIUrl":null,"url":null,"abstract":"There are strong demands to utilize multi-core computing resources effectively for large-scale and highly detailed multi-agent simulations. We have proposed a framework to assist parameter tuning process of multi-core programming for simulation developers to utilize many parallel cores in their simulation programs efficiently. However, due to its massive computation costs, it is not easy task to seek the sufficient compilation and execution parameters and analyze their performance characteristics for various execution settings. In this paper, we present a preliminary analysis of parameter optimization based on BLMAB by utilizing our framework. We show how our BLMAB-based approach can effectively be used on the parameter optimization process.","PeriodicalId":138805,"journal":{"name":"2014 IEEE 7th International Conference on Service-Oriented Computing and Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Preliminary Analysis on BLMAB-Based Approximate Optimization Support for Multi Agent Simulations on Multi-core and GPU-Based Computing Environment\",\"authors\":\"Y. Sano, Yoshiaki Kadono, Naoki Fukuta\",\"doi\":\"10.1109/SOCA.2014.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are strong demands to utilize multi-core computing resources effectively for large-scale and highly detailed multi-agent simulations. We have proposed a framework to assist parameter tuning process of multi-core programming for simulation developers to utilize many parallel cores in their simulation programs efficiently. However, due to its massive computation costs, it is not easy task to seek the sufficient compilation and execution parameters and analyze their performance characteristics for various execution settings. In this paper, we present a preliminary analysis of parameter optimization based on BLMAB by utilizing our framework. We show how our BLMAB-based approach can effectively be used on the parameter optimization process.\",\"PeriodicalId\":138805,\"journal\":{\"name\":\"2014 IEEE 7th International Conference on Service-Oriented Computing and Applications\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 7th International Conference on Service-Oriented Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCA.2014.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Service-Oriented Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCA.2014.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大规模、高细节的多智能体仿真中,需要有效地利用多核计算资源。我们提出了一个框架,以协助多核编程的参数调整过程,为仿真开发人员在其仿真程序中有效地利用多个并行核。然而,由于其巨大的计算成本,对于各种执行设置,寻求足够的编译和执行参数并分析其性能特征并不是一件容易的事情。在本文中,我们利用我们的框架对基于BLMAB的参数优化进行了初步分析。我们展示了基于blmab的方法如何有效地用于参数优化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Preliminary Analysis on BLMAB-Based Approximate Optimization Support for Multi Agent Simulations on Multi-core and GPU-Based Computing Environment
There are strong demands to utilize multi-core computing resources effectively for large-scale and highly detailed multi-agent simulations. We have proposed a framework to assist parameter tuning process of multi-core programming for simulation developers to utilize many parallel cores in their simulation programs efficiently. However, due to its massive computation costs, it is not easy task to seek the sufficient compilation and execution parameters and analyze their performance characteristics for various execution settings. In this paper, we present a preliminary analysis of parameter optimization based on BLMAB by utilizing our framework. We show how our BLMAB-based approach can effectively be used on the parameter optimization process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SCE^MT: A Multi-tenant Service Composition Engine A User-Friendly Authentication Solution Using NFC Card Emulation on Android Crowdsourced Mobile Sensing for Smarter City Life Improved Heuristics with Data Rounding for Combinatorial Food Packing Problems Situated Engagement and Virtual Services in a Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1