心跳和呼吸信号的联合处理,用于估计身体适应系统的功能

T. Vityazeva, S. Vityazev, A. Mikheev
{"title":"心跳和呼吸信号的联合处理,用于估计身体适应系统的功能","authors":"T. Vityazeva, S. Vityazev, A. Mikheev","doi":"10.1109/MECO.2016.7525795","DOIUrl":null,"url":null,"abstract":"Joint processing of respiratory and heart beat signals is considered in this paper. This joint processing makes heart rate variability analysis more reliable and improves body adaption system diagnostic in general. It is offered to use pulse-frequency modulation (PFM) and pulse-amplitude modulation (PAM) signals to represent tachogram that moves processing from frequency to time domain. Implementation issues and computational costs reduction with multirate processing are discussed. Modeling results proves the effectiveness of the offered approach.","PeriodicalId":253666,"journal":{"name":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Heart beat and respiratory signals joint processing for the estimation of body adaptation system functionality\",\"authors\":\"T. Vityazeva, S. Vityazev, A. Mikheev\",\"doi\":\"10.1109/MECO.2016.7525795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Joint processing of respiratory and heart beat signals is considered in this paper. This joint processing makes heart rate variability analysis more reliable and improves body adaption system diagnostic in general. It is offered to use pulse-frequency modulation (PFM) and pulse-amplitude modulation (PAM) signals to represent tachogram that moves processing from frequency to time domain. Implementation issues and computational costs reduction with multirate processing are discussed. Modeling results proves the effectiveness of the offered approach.\",\"PeriodicalId\":253666,\"journal\":{\"name\":\"2016 5th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2016.7525795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2016.7525795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文考虑了呼吸和心跳信号的联合处理。这种联合处理使心率变异性分析更加可靠,提高了身体适应系统的诊断水平。提出用脉冲频率调制(PFM)和脉冲幅度调制(PAM)信号表示速度图,使处理从频域转移到时域。讨论了多速率处理的实现问题和计算成本的降低。建模结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heart beat and respiratory signals joint processing for the estimation of body adaptation system functionality
Joint processing of respiratory and heart beat signals is considered in this paper. This joint processing makes heart rate variability analysis more reliable and improves body adaption system diagnostic in general. It is offered to use pulse-frequency modulation (PFM) and pulse-amplitude modulation (PAM) signals to represent tachogram that moves processing from frequency to time domain. Implementation issues and computational costs reduction with multirate processing are discussed. Modeling results proves the effectiveness of the offered approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logo watermarking for speech signal protection in the compressive sensing scenario Unaliasing of undersampled spectra Driving behavior simulator of lane changing using user-designed interface Prediction of children diseases using semantics Comparative analysis of classification algorithms on three different datasets using WEKA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1