PEDOT:用于ECG电极的PSS/ pdms涂层棉织物

G. B. Tseghai, B. Malengier, Kinde Anlay Fante, A. B. Nigusse, Bulcha Belay Etana, L. Van Langenhove
{"title":"PEDOT:用于ECG电极的PSS/ pdms涂层棉织物","authors":"G. B. Tseghai, B. Malengier, Kinde Anlay Fante, A. B. Nigusse, Bulcha Belay Etana, L. Van Langenhove","doi":"10.1109/FLEPS49123.2020.9239526","DOIUrl":null,"url":null,"abstract":"For electrocardiography (ECG) applications, gel dependant metallic electrodes such as Ag/AgCl are typically used, but these cause skin irritation and become dehydrated over time. To overcome these problems, a flexible electro-conductive textile material with a surface resistance of 332.5 Ω/sq and resistivity of 6.6 Ω.cm has been developed by coating PEDOT:PSS/PDMS on cotton fabric via flat screen printing. The coated fabric has been used to construct ECG electrodes and was compared with standard Ag/AgCl electrodes. An ECG waveform (with peaks P = 0.14 mV, QRS = 0.96 mV and T = 0.36 mV) has been collected with the textile-based electrodes during 3 minutes of static ECG measurement. The signal quality was comparable with the Ag/AgCl standard electrodes (P = 0.15 mV, QRS = 0.98 mV and T = 0.48 mV). The textile-based dry electrodes could potentially replace the gelled standard biopotential electrodes and avoid associated problems, especially for prolonged monitoring.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"PEDOT:PSS/PDMS-coated cotton fabric for ECG electrode\",\"authors\":\"G. B. Tseghai, B. Malengier, Kinde Anlay Fante, A. B. Nigusse, Bulcha Belay Etana, L. Van Langenhove\",\"doi\":\"10.1109/FLEPS49123.2020.9239526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For electrocardiography (ECG) applications, gel dependant metallic electrodes such as Ag/AgCl are typically used, but these cause skin irritation and become dehydrated over time. To overcome these problems, a flexible electro-conductive textile material with a surface resistance of 332.5 Ω/sq and resistivity of 6.6 Ω.cm has been developed by coating PEDOT:PSS/PDMS on cotton fabric via flat screen printing. The coated fabric has been used to construct ECG electrodes and was compared with standard Ag/AgCl electrodes. An ECG waveform (with peaks P = 0.14 mV, QRS = 0.96 mV and T = 0.36 mV) has been collected with the textile-based electrodes during 3 minutes of static ECG measurement. The signal quality was comparable with the Ag/AgCl standard electrodes (P = 0.15 mV, QRS = 0.98 mV and T = 0.48 mV). The textile-based dry electrodes could potentially replace the gelled standard biopotential electrodes and avoid associated problems, especially for prolonged monitoring.\",\"PeriodicalId\":101496,\"journal\":{\"name\":\"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FLEPS49123.2020.9239526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FLEPS49123.2020.9239526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

对于心电图(ECG)应用,通常使用凝胶依赖的金属电极,如Ag/AgCl,但这些电极会引起皮肤刺激并随着时间的推移而脱水。为了克服这些问题,一种表面电阻为332.5 Ω/sq,电阻率为6.6 Ω的柔性导电纺织材料。通过平网印花在棉织物上涂布PEDOT:PSS/PDMS,研制了cm。该涂层织物已用于构建ECG电极,并与标准Ag/AgCl电极进行了比较。在3分钟的静态心电图测量中,织物电极采集了心电图波形(峰值P = 0.14 mV, QRS = 0.96 mV, T = 0.36 mV)。信号质量与Ag/AgCl标准电极相当(P = 0.15 mV, QRS = 0.98 mV, T = 0.48 mV)。基于纺织品的干电极有可能取代凝胶的标准生物电位电极,并避免相关问题,特别是长时间监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PEDOT:PSS/PDMS-coated cotton fabric for ECG electrode
For electrocardiography (ECG) applications, gel dependant metallic electrodes such as Ag/AgCl are typically used, but these cause skin irritation and become dehydrated over time. To overcome these problems, a flexible electro-conductive textile material with a surface resistance of 332.5 Ω/sq and resistivity of 6.6 Ω.cm has been developed by coating PEDOT:PSS/PDMS on cotton fabric via flat screen printing. The coated fabric has been used to construct ECG electrodes and was compared with standard Ag/AgCl electrodes. An ECG waveform (with peaks P = 0.14 mV, QRS = 0.96 mV and T = 0.36 mV) has been collected with the textile-based electrodes during 3 minutes of static ECG measurement. The signal quality was comparable with the Ag/AgCl standard electrodes (P = 0.15 mV, QRS = 0.98 mV and T = 0.48 mV). The textile-based dry electrodes could potentially replace the gelled standard biopotential electrodes and avoid associated problems, especially for prolonged monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wearable Wireless Power Transfer using Direct-Write Dispenser Printed Flexible Coils Binary Neural Network as a Flexible Integrated Circuit for Odour Classification Stretchable Wireless Sensor Skin for the Surface Monitoring of Soft Objects Assessing the Stability of Printed NWs by in situ SEM Characterisation Development of a Novel and Flexible MWCNT/PDMS Based Resistive Force Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1