Sivanand Achanta, Rambabu Banoth, Ayushi Pandey, Anandaswarup Vadapalli, S. Gangashetty
{"title":"基于递归神经网络隐藏状态的上下文表示用于统计参数语音合成","authors":"Sivanand Achanta, Rambabu Banoth, Ayushi Pandey, Anandaswarup Vadapalli, S. Gangashetty","doi":"10.21437/SSW.2016-28","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to use hidden state vector ob-tained from recurrent neural network (RNN) as a context vector representation for deep neural network (DNN) based statistical parametric speech synthesis. While in a typical DNN based system, there is a hierarchy of text features from phone level to utterance level, they are usually in 1-hot-k encoded representation. Our hypothesis is that, supplementing the conventional text features with a continuous frame-level acoustically guided representation would improve the acoustic modeling. The hidden state from an RNN trained to predict acoustic features is used as the additional contextual information. A dataset consisting of 2 Indian languages (Telugu and Hindi) from Blizzard challenge 2015 was used in our experiments. Both the subjective listening tests and the objective scores indicate that the proposed approach per-forms significantly better than the baseline DNN system.","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contextual Representation using Recurrent Neural Network Hidden State for Statistical Parametric Speech Synthesis\",\"authors\":\"Sivanand Achanta, Rambabu Banoth, Ayushi Pandey, Anandaswarup Vadapalli, S. Gangashetty\",\"doi\":\"10.21437/SSW.2016-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to use hidden state vector ob-tained from recurrent neural network (RNN) as a context vector representation for deep neural network (DNN) based statistical parametric speech synthesis. While in a typical DNN based system, there is a hierarchy of text features from phone level to utterance level, they are usually in 1-hot-k encoded representation. Our hypothesis is that, supplementing the conventional text features with a continuous frame-level acoustically guided representation would improve the acoustic modeling. The hidden state from an RNN trained to predict acoustic features is used as the additional contextual information. A dataset consisting of 2 Indian languages (Telugu and Hindi) from Blizzard challenge 2015 was used in our experiments. Both the subjective listening tests and the objective scores indicate that the proposed approach per-forms significantly better than the baseline DNN system.\",\"PeriodicalId\":340820,\"journal\":{\"name\":\"Speech Synthesis Workshop\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Synthesis Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/SSW.2016-28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SSW.2016-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contextual Representation using Recurrent Neural Network Hidden State for Statistical Parametric Speech Synthesis
In this paper, we propose to use hidden state vector ob-tained from recurrent neural network (RNN) as a context vector representation for deep neural network (DNN) based statistical parametric speech synthesis. While in a typical DNN based system, there is a hierarchy of text features from phone level to utterance level, they are usually in 1-hot-k encoded representation. Our hypothesis is that, supplementing the conventional text features with a continuous frame-level acoustically guided representation would improve the acoustic modeling. The hidden state from an RNN trained to predict acoustic features is used as the additional contextual information. A dataset consisting of 2 Indian languages (Telugu and Hindi) from Blizzard challenge 2015 was used in our experiments. Both the subjective listening tests and the objective scores indicate that the proposed approach per-forms significantly better than the baseline DNN system.