交换性条件下的后向、前向和后向动态规划模型

S. Verdú, H. Poor
{"title":"交换性条件下的后向、前向和后向动态规划模型","authors":"S. Verdú, H. Poor","doi":"10.1109/CDC.1984.272179","DOIUrl":null,"url":null,"abstract":"Several authors (Denardo [61 Karp and Held [18], and Bertsekas [3]) have proposed abstract dynamic programming models encompassing a wide variety of sequential optimization problems. The unifying purpose of these models is to impose sufficient conditions on the recursive defimtion of the objective function to guarantee the validity of the solution of the optimization problem by a dynamic programming iteration. In this paper we propose a general dynamic programming operator model that includes, but is not restricted to, optimization problems. Any functional satisfying a certain commutativity condition (which reduces to the principle of optimality in extrermzation problems see Section 2, B2) a-ith the generating operator of the objective recursive function, results in a sequential problem solvable by a dynamic programming iteration. Examples of sequential nonextremization problems fitting t h s framework are the derivation of marginal distributions in arbitrary probability spaces, iterative computation of stageseparated functions defined on general algebra~c systems such as additive commutative semi-groups with distributlve products, generation of symbolic transfer functions, and the Chapman-Kolmogorov equations.","PeriodicalId":269680,"journal":{"name":"The 23rd IEEE Conference on Decision and Control","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Backward, forward and backward-forward dynamic programming models under commutativity conditions\",\"authors\":\"S. Verdú, H. Poor\",\"doi\":\"10.1109/CDC.1984.272179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several authors (Denardo [61 Karp and Held [18], and Bertsekas [3]) have proposed abstract dynamic programming models encompassing a wide variety of sequential optimization problems. The unifying purpose of these models is to impose sufficient conditions on the recursive defimtion of the objective function to guarantee the validity of the solution of the optimization problem by a dynamic programming iteration. In this paper we propose a general dynamic programming operator model that includes, but is not restricted to, optimization problems. Any functional satisfying a certain commutativity condition (which reduces to the principle of optimality in extrermzation problems see Section 2, B2) a-ith the generating operator of the objective recursive function, results in a sequential problem solvable by a dynamic programming iteration. Examples of sequential nonextremization problems fitting t h s framework are the derivation of marginal distributions in arbitrary probability spaces, iterative computation of stageseparated functions defined on general algebra~c systems such as additive commutative semi-groups with distributlve products, generation of symbolic transfer functions, and the Chapman-Kolmogorov equations.\",\"PeriodicalId\":269680,\"journal\":{\"name\":\"The 23rd IEEE Conference on Decision and Control\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 23rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1984.272179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1984.272179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

几位作者(Denardo [61 Karp和Held[18]和Bertsekas[3])提出了包含各种顺序优化问题的抽象动态规划模型。这些模型的统一目的是对目标函数的递归定义施加充分条件,以保证动态规划迭代求解优化问题的有效性。在本文中,我们提出了一个通用的动态规划算子模型,它包括但不限于最优化问题。任何满足交换性条件的泛函(可归结为极值化问题中的最优性原则,参见第2节B2) a-与目标递归函数的生成算子一起,导致一个可通过动态规划迭代求解的顺序问题。适合s框架的序列非极值问题的例子有:任意概率空间中边际分布的推导,在一般代数~c系统(如具有分布积的可加交换半群)上定义的阶段分离函数的迭代计算,符号传递函数的生成,以及Chapman-Kolmogorov方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Backward, forward and backward-forward dynamic programming models under commutativity conditions
Several authors (Denardo [61 Karp and Held [18], and Bertsekas [3]) have proposed abstract dynamic programming models encompassing a wide variety of sequential optimization problems. The unifying purpose of these models is to impose sufficient conditions on the recursive defimtion of the objective function to guarantee the validity of the solution of the optimization problem by a dynamic programming iteration. In this paper we propose a general dynamic programming operator model that includes, but is not restricted to, optimization problems. Any functional satisfying a certain commutativity condition (which reduces to the principle of optimality in extrermzation problems see Section 2, B2) a-ith the generating operator of the objective recursive function, results in a sequential problem solvable by a dynamic programming iteration. Examples of sequential nonextremization problems fitting t h s framework are the derivation of marginal distributions in arbitrary probability spaces, iterative computation of stageseparated functions defined on general algebra~c systems such as additive commutative semi-groups with distributlve products, generation of symbolic transfer functions, and the Chapman-Kolmogorov equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive implementation of the internal model principle Fuzzy parking control of model car Stochastic control of a partially observed linear stochastic system with an exponential-of-integral performance index Structures for nonlinear systems Reducing cluster size for computing remedial adjustments for voltage and loading violations on the power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1