基于自适应模糊加权和有效性函数的进化聚类算法

Hongbin Dong, Wei-gen Hou, Guisheng Yin
{"title":"基于自适应模糊加权和有效性函数的进化聚类算法","authors":"Hongbin Dong, Wei-gen Hou, Guisheng Yin","doi":"10.1109/CSO.2010.204","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel objective function called the adaptive Fuzzy Weighted Sum Validity Function(FWSVF), which is a merged weight of the several fuzzy cluster validity functions, including XB, PE, PC and PBMF. The improved validity function is more efficient than others. Furthermore, we present a Mixed Strategy Evolutionary Clustering Algorithm based adaptive validity function(AMSECA), which is merged from Evolutionary Algorithm along with Mixed Strategy and Fuzzy C-means Algorithm. Moreover, in the experiments, we show the effectiveness of AMSECA, AMSECA could find the proper number of clusters automatically as well as appropriate partitions of the data set and avoid local optima.","PeriodicalId":427481,"journal":{"name":"2010 Third International Joint Conference on Computational Science and Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Evolutionary Clustering Algorithm Based on Adaptive Fuzzy Weighted Sum Validity Function\",\"authors\":\"Hongbin Dong, Wei-gen Hou, Guisheng Yin\",\"doi\":\"10.1109/CSO.2010.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel objective function called the adaptive Fuzzy Weighted Sum Validity Function(FWSVF), which is a merged weight of the several fuzzy cluster validity functions, including XB, PE, PC and PBMF. The improved validity function is more efficient than others. Furthermore, we present a Mixed Strategy Evolutionary Clustering Algorithm based adaptive validity function(AMSECA), which is merged from Evolutionary Algorithm along with Mixed Strategy and Fuzzy C-means Algorithm. Moreover, in the experiments, we show the effectiveness of AMSECA, AMSECA could find the proper number of clusters automatically as well as appropriate partitions of the data set and avoid local optima.\",\"PeriodicalId\":427481,\"journal\":{\"name\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Joint Conference on Computational Science and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSO.2010.204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Joint Conference on Computational Science and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2010.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的目标函数,称为自适应模糊加权和有效性函数(FWSVF),它是几个模糊聚类有效性函数XB, PE, PC和PBMF的合并权值。改进后的有效性函数比其他函数效率更高。在此基础上,提出了一种基于自适应有效性函数的混合策略进化聚类算法(AMSECA),该算法将进化算法与混合策略和模糊c均值算法相融合。此外,在实验中,我们证明了AMSECA的有效性,AMSECA可以自动找到适当数量的聚类,并对数据集进行适当的分区,避免局部最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Evolutionary Clustering Algorithm Based on Adaptive Fuzzy Weighted Sum Validity Function
In this paper, we propose a novel objective function called the adaptive Fuzzy Weighted Sum Validity Function(FWSVF), which is a merged weight of the several fuzzy cluster validity functions, including XB, PE, PC and PBMF. The improved validity function is more efficient than others. Furthermore, we present a Mixed Strategy Evolutionary Clustering Algorithm based adaptive validity function(AMSECA), which is merged from Evolutionary Algorithm along with Mixed Strategy and Fuzzy C-means Algorithm. Moreover, in the experiments, we show the effectiveness of AMSECA, AMSECA could find the proper number of clusters automatically as well as appropriate partitions of the data set and avoid local optima.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the Internal Fraud Risk of Chinese Commercial Banks A Fast Bidirectional Method for Mining Maximal Frequent Itemsets A Prediction of the Monthly Precipitation Model Based on PSO-ANN and its Applications On the Analysis of Performance of the Artificial Tribe Algorithm Analysis on the Volatility of SHIBOR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1