纳米无机填料对环氧树脂电性能的改善

J. Horwath, D. Schweickart, G. García, D. Klosterman, M. Galaska, A. Schrand, L. Walko
{"title":"纳米无机填料对环氧树脂电性能的改善","authors":"J. Horwath, D. Schweickart, G. García, D. Klosterman, M. Galaska, A. Schrand, L. Walko","doi":"10.1109/MODSYM.2006.365213","DOIUrl":null,"url":null,"abstract":"Nanometer-sized inorganic fillers are increasingly used as reinforcing materials for mechanical or thermal property improvement of polymers. Improvements in mechanical modulus or heat deflection temperature are often realized. These fillers may also improve some electrical properties such as corona endurance or dielectric breakdown voltage in polymers. In compact high voltage power supplies, epoxy resins are often the potting material of choice in manufacturing processes. This is often true for applications requiring a robust or position-insensitive insulation system design, such as mobile communications equipment or aerospace flight vehicles. Nanometer-sized inorganic fillers in epoxy resins can result in improved mechanical and electrical performance, without affecting the processes for component manufacturing. In our previous work, polyhedral oligomeric silsesquioxane (POSS) was selected as the nanometer-sized inorganic filler of interest. POSS-filled epoxies showed a five times improvement in ac corona lifetime for selected POSS-epoxy blends compared to unloaded epoxy. In the current study, the average dielectric breakdown voltage of POSS-filled epoxy was increased thirty-four percent compared to unloaded epoxy. Additionally, scanning electron microscopy showed uniform dispersion of the POSS filler down to a level of 10-100 nm. Dispersion uniformity appears to be a critical parameter in obtaining the desired property enhancements.","PeriodicalId":410776,"journal":{"name":"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Improved Electrical Properties of Epoxy Resin with Nanometer-Sized Inorganic Fillers\",\"authors\":\"J. Horwath, D. Schweickart, G. García, D. Klosterman, M. Galaska, A. Schrand, L. Walko\",\"doi\":\"10.1109/MODSYM.2006.365213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanometer-sized inorganic fillers are increasingly used as reinforcing materials for mechanical or thermal property improvement of polymers. Improvements in mechanical modulus or heat deflection temperature are often realized. These fillers may also improve some electrical properties such as corona endurance or dielectric breakdown voltage in polymers. In compact high voltage power supplies, epoxy resins are often the potting material of choice in manufacturing processes. This is often true for applications requiring a robust or position-insensitive insulation system design, such as mobile communications equipment or aerospace flight vehicles. Nanometer-sized inorganic fillers in epoxy resins can result in improved mechanical and electrical performance, without affecting the processes for component manufacturing. In our previous work, polyhedral oligomeric silsesquioxane (POSS) was selected as the nanometer-sized inorganic filler of interest. POSS-filled epoxies showed a five times improvement in ac corona lifetime for selected POSS-epoxy blends compared to unloaded epoxy. In the current study, the average dielectric breakdown voltage of POSS-filled epoxy was increased thirty-four percent compared to unloaded epoxy. Additionally, scanning electron microscopy showed uniform dispersion of the POSS filler down to a level of 10-100 nm. Dispersion uniformity appears to be a critical parameter in obtaining the desired property enhancements.\",\"PeriodicalId\":410776,\"journal\":{\"name\":\"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MODSYM.2006.365213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MODSYM.2006.365213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

纳米无机填料越来越多地被用作增强材料,以改善聚合物的力学或热性能。机械模量或热挠曲温度的提高往往可以实现。这些填料还可以改善某些电性能,如聚合物的电晕耐久性或介电击穿电压。在紧凑型高压电源中,环氧树脂通常是制造过程中选择的灌封材料。这通常适用于需要坚固或位置不敏感绝缘系统设计的应用,例如移动通信设备或航空航天飞行器。环氧树脂中纳米级的无机填料可以改善机械和电气性能,而不会影响组件制造过程。在我们之前的工作中,我们选择了多面体低聚硅氧烷(POSS)作为感兴趣的纳米无机填料。与空载环氧树脂相比,poss填充环氧树脂的交流电晕寿命提高了5倍。在目前的研究中,poss填充环氧树脂的平均介电击穿电压比未加载的环氧树脂提高了34%。此外,扫描电镜显示POSS填料均匀分散至10-100 nm的水平。色散均匀性似乎是获得所需性能增强的关键参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Electrical Properties of Epoxy Resin with Nanometer-Sized Inorganic Fillers
Nanometer-sized inorganic fillers are increasingly used as reinforcing materials for mechanical or thermal property improvement of polymers. Improvements in mechanical modulus or heat deflection temperature are often realized. These fillers may also improve some electrical properties such as corona endurance or dielectric breakdown voltage in polymers. In compact high voltage power supplies, epoxy resins are often the potting material of choice in manufacturing processes. This is often true for applications requiring a robust or position-insensitive insulation system design, such as mobile communications equipment or aerospace flight vehicles. Nanometer-sized inorganic fillers in epoxy resins can result in improved mechanical and electrical performance, without affecting the processes for component manufacturing. In our previous work, polyhedral oligomeric silsesquioxane (POSS) was selected as the nanometer-sized inorganic filler of interest. POSS-filled epoxies showed a five times improvement in ac corona lifetime for selected POSS-epoxy blends compared to unloaded epoxy. In the current study, the average dielectric breakdown voltage of POSS-filled epoxy was increased thirty-four percent compared to unloaded epoxy. Additionally, scanning electron microscopy showed uniform dispersion of the POSS filler down to a level of 10-100 nm. Dispersion uniformity appears to be a critical parameter in obtaining the desired property enhancements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast discharge, high energy density capacitor performance Series Stacked Switches for Radar Transmitters Biophotonic Studies of Mammalian Cells with Nanosecond Pulsed Power Using Quantum Dots Green-Laser-Triggered Water Switching at 1.6 MegaVolts A Comparison of the AC Breakdown Strength of New and Used Poly-α Olefin Oil to Transformer Oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1