{"title":"m-模型:一种新的精确中长度传输线模型","authors":"Ali R. Al-Roomi, M. El-Hawary","doi":"10.1109/CCECE47787.2020.9255807","DOIUrl":null,"url":null,"abstract":"Real transmission lines are translated into mathematical models using either the lumped parameter approach or the distributed parameter approach. The first one is used for short- and medium-length transmission lines, while the other is used for long-length transmission lines where the accuracy and precision are required. For medium transmission lines, the lumped parameter approach can be applied using one of four popular circuit representations known as gamma ($\\Gamma$), opposite-gamma ┐, tee (T), and pi $\\Pi$. This study presents a new circuit representation called em (M). This model is inspired by the sagging phenomenon where, at the sag point, the distributed series impedance of the $\\Pi$-model is divided into two equal/unequal parts and the distributed shunt admittance at the center is bigger than that at both ends. For some numerical experiments, the M-model shows a stunning performance in estimating transmission line readings. It wins in most cases and, for the few remaining cases, the M-model shows very competitive results.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"M-Model: A New Precise Medium-Length Transmission Line Model\",\"authors\":\"Ali R. Al-Roomi, M. El-Hawary\",\"doi\":\"10.1109/CCECE47787.2020.9255807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real transmission lines are translated into mathematical models using either the lumped parameter approach or the distributed parameter approach. The first one is used for short- and medium-length transmission lines, while the other is used for long-length transmission lines where the accuracy and precision are required. For medium transmission lines, the lumped parameter approach can be applied using one of four popular circuit representations known as gamma ($\\\\Gamma$), opposite-gamma ┐, tee (T), and pi $\\\\Pi$. This study presents a new circuit representation called em (M). This model is inspired by the sagging phenomenon where, at the sag point, the distributed series impedance of the $\\\\Pi$-model is divided into two equal/unequal parts and the distributed shunt admittance at the center is bigger than that at both ends. For some numerical experiments, the M-model shows a stunning performance in estimating transmission line readings. It wins in most cases and, for the few remaining cases, the M-model shows very competitive results.\",\"PeriodicalId\":296506,\"journal\":{\"name\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE47787.2020.9255807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
采用集总参数法或分布参数法将实际输电线路转换成数学模型。第一种用于中短长度输电线路,另一种用于对精度和精度有要求的长长度输电线路。对于中等传输线,集总参数方法可以使用四种流行的电路表示形式之一,即gamma ($\Gamma$),对向gamma -, tee (T)和pi $\Pi$。本文提出了一种新的电路表示em (M),该模型的灵感来自于凹陷现象,在凹陷点处,$\Pi$ -模型的分布串联阻抗分为两个相等/不相等的部分,中心的分布并联导纳大于两端。在一些数值实验中,m模型在估计传输线读数方面表现出惊人的性能。它在大多数情况下获胜,而在剩下的少数情况下,m模型显示出非常有竞争力的结果。
M-Model: A New Precise Medium-Length Transmission Line Model
Real transmission lines are translated into mathematical models using either the lumped parameter approach or the distributed parameter approach. The first one is used for short- and medium-length transmission lines, while the other is used for long-length transmission lines where the accuracy and precision are required. For medium transmission lines, the lumped parameter approach can be applied using one of four popular circuit representations known as gamma ($\Gamma$), opposite-gamma ┐, tee (T), and pi $\Pi$. This study presents a new circuit representation called em (M). This model is inspired by the sagging phenomenon where, at the sag point, the distributed series impedance of the $\Pi$-model is divided into two equal/unequal parts and the distributed shunt admittance at the center is bigger than that at both ends. For some numerical experiments, the M-model shows a stunning performance in estimating transmission line readings. It wins in most cases and, for the few remaining cases, the M-model shows very competitive results.