低功耗嵌入式处理器路径预测缓存的动态时间调优

Chi Zhang, Xiang Wang, C. Bu, L. Wang, Huihui Ji, Tongsheng Xia
{"title":"低功耗嵌入式处理器路径预测缓存的动态时间调优","authors":"Chi Zhang, Xiang Wang, C. Bu, L. Wang, Huihui Ji, Tongsheng Xia","doi":"10.1109/DASC.2009.5347418","DOIUrl":null,"url":null,"abstract":"The rapid advances in embedded microprocessor technologies provide opportunities to promote digital avionic systems significantly. With the complexity and frequency increase, power consumption has quickly become a key design constraint in embedded microprocessor designs. The embedded processors in avionic systems must utilize energy efficiently, as their energy payload is restricted by battery factor and weight constraints in aircrafts. This paper proposed a new approaching using dynamic time slice turning with way prediction technology for achieving high performance and low energy consumption in set-associative cache. Among all the cache power saving approaches, prediction cache surpasses others for it reduces power dissipation along with negligible degradation of performance. However, way prediction cache depends heavily on locality principle of programs, especially for programs executed in embedded processor. Time turning way-prediction cache is introduced in this paper to self-adapt time slice turning, according to prediction misses and cache misses in execution interval. Since predictor consumes additional energy itself, dynamic time turning cache allow for proper reconfiguration actions; consequently, it cuts down unnecessary reconfiguration power dissipation. Simulators Sim-Panalyzer and Cacti are chose to estimate the power dissipations of the parameterized architectural components in implementing our dynamic time turning way prediction caches. This method avoids unnecessary reconfiguration actions by adapting program behavior much more intelligently; meanwhile, it keeps performance degradation in a very small scale. Suggested novel cache design in avionic embedded microprocessor satisfies low power and high performance requirement tendency in avionic electronics systems development.","PeriodicalId":313168,"journal":{"name":"2009 IEEE/AIAA 28th Digital Avionics Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dynamic time tuning for way prediction cache in low power embedded processors\",\"authors\":\"Chi Zhang, Xiang Wang, C. Bu, L. Wang, Huihui Ji, Tongsheng Xia\",\"doi\":\"10.1109/DASC.2009.5347418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid advances in embedded microprocessor technologies provide opportunities to promote digital avionic systems significantly. With the complexity and frequency increase, power consumption has quickly become a key design constraint in embedded microprocessor designs. The embedded processors in avionic systems must utilize energy efficiently, as their energy payload is restricted by battery factor and weight constraints in aircrafts. This paper proposed a new approaching using dynamic time slice turning with way prediction technology for achieving high performance and low energy consumption in set-associative cache. Among all the cache power saving approaches, prediction cache surpasses others for it reduces power dissipation along with negligible degradation of performance. However, way prediction cache depends heavily on locality principle of programs, especially for programs executed in embedded processor. Time turning way-prediction cache is introduced in this paper to self-adapt time slice turning, according to prediction misses and cache misses in execution interval. Since predictor consumes additional energy itself, dynamic time turning cache allow for proper reconfiguration actions; consequently, it cuts down unnecessary reconfiguration power dissipation. Simulators Sim-Panalyzer and Cacti are chose to estimate the power dissipations of the parameterized architectural components in implementing our dynamic time turning way prediction caches. This method avoids unnecessary reconfiguration actions by adapting program behavior much more intelligently; meanwhile, it keeps performance degradation in a very small scale. Suggested novel cache design in avionic embedded microprocessor satisfies low power and high performance requirement tendency in avionic electronics systems development.\",\"PeriodicalId\":313168,\"journal\":{\"name\":\"2009 IEEE/AIAA 28th Digital Avionics Systems Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE/AIAA 28th Digital Avionics Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2009.5347418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE/AIAA 28th Digital Avionics Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2009.5347418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

嵌入式微处理器技术的快速发展为数字化航空电子系统的发展提供了契机。随着复杂度和频率的增加,功耗迅速成为嵌入式微处理器设计的关键设计约束。航空电子系统中嵌入式处理器的能量有效载荷受到飞机电池因素和重量的限制,因此必须有效地利用能量。为了实现集关联缓存的高性能和低能耗,提出了一种基于路径预测技术的动态时间片翻转算法。在所有的缓存节能方法中,预测缓存优于其他方法,因为它减少了功耗,并且性能下降可以忽略不计。然而,预测缓存的方式很大程度上取决于程序的局部性原则,特别是对于在嵌入式处理器中执行的程序。本文提出了一种基于时间片翻转的预测缓存方法,根据预测失误和缓存失误在执行间隔内自适应时间片翻转。由于预测器本身消耗额外的能量,动态时间转换缓存允许适当的重新配置动作;因此,它减少了不必要的重新配置功耗。采用仿真器Sim-Panalyzer和Cacti来估计参数化架构组件在实现动态时间转向方式预测缓存时的功耗。该方法通过更智能地适应程序行为,避免了不必要的重构动作;同时,它使性能下降保持在非常小的范围内。提出了一种新的航空电子嵌入式微处理器缓存设计方案,满足了航空电子系统发展的低功耗、高性能要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic time tuning for way prediction cache in low power embedded processors
The rapid advances in embedded microprocessor technologies provide opportunities to promote digital avionic systems significantly. With the complexity and frequency increase, power consumption has quickly become a key design constraint in embedded microprocessor designs. The embedded processors in avionic systems must utilize energy efficiently, as their energy payload is restricted by battery factor and weight constraints in aircrafts. This paper proposed a new approaching using dynamic time slice turning with way prediction technology for achieving high performance and low energy consumption in set-associative cache. Among all the cache power saving approaches, prediction cache surpasses others for it reduces power dissipation along with negligible degradation of performance. However, way prediction cache depends heavily on locality principle of programs, especially for programs executed in embedded processor. Time turning way-prediction cache is introduced in this paper to self-adapt time slice turning, according to prediction misses and cache misses in execution interval. Since predictor consumes additional energy itself, dynamic time turning cache allow for proper reconfiguration actions; consequently, it cuts down unnecessary reconfiguration power dissipation. Simulators Sim-Panalyzer and Cacti are chose to estimate the power dissipations of the parameterized architectural components in implementing our dynamic time turning way prediction caches. This method avoids unnecessary reconfiguration actions by adapting program behavior much more intelligently; meanwhile, it keeps performance degradation in a very small scale. Suggested novel cache design in avionic embedded microprocessor satisfies low power and high performance requirement tendency in avionic electronics systems development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Challenges in updating military safety-critical hardware Simplified dynamic density: A metric for dynamic airspace configuration and NextGen analysis Analysis of divergences from area navigation departure routes at DFW airport Analysis of advanced flight management systems (FMS), flight management computer (FMC) field observations, trials; lateral and vertical path integration Trajectory prediction credibility concept
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1