二权Hopfield网络的信息容量与容错性

A. Jagota, A. Negatu, D. Kaznachey
{"title":"二权Hopfield网络的信息容量与容错性","authors":"A. Jagota, A. Negatu, D. Kaznachey","doi":"10.1109/ICNN.1994.374327","DOIUrl":null,"url":null,"abstract":"We define a measure for the fault-tolerance of binary weights Hopfield networks and relate it to a measure of information capacity. Using these measures, we compute results on the fault-tolerance and information capacity of certain Hopfield networks employing binary-valued weights. These Hopfield networks are governed by a single scalar parameter that controls their weights and biases. In one extreme value of this parameter, we show that the information capacity is optimal whereas the fault-tolerance is zero. At the other extreme, our results are inexact. We are only able to show that the information capacity is at least of the order of N log/sub 2/ N and N respectively, where N is the number of units. Our fault-tolerance results are even poorer, though nonzero. Nevertheless they do indicate a trade-off between information capacity and fault-tolerance as this parameter is varied from the first extreme to the second. We are also able to show that particular collections of patterns remain stable states as this parameter is varied, and fault-tolerance for them goes from zero at one extreme of this parameter to /spl Theta/(N/sup 2/) at the other extreme.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Information capacity and fault tolerance of binary weights Hopfield nets\",\"authors\":\"A. Jagota, A. Negatu, D. Kaznachey\",\"doi\":\"10.1109/ICNN.1994.374327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a measure for the fault-tolerance of binary weights Hopfield networks and relate it to a measure of information capacity. Using these measures, we compute results on the fault-tolerance and information capacity of certain Hopfield networks employing binary-valued weights. These Hopfield networks are governed by a single scalar parameter that controls their weights and biases. In one extreme value of this parameter, we show that the information capacity is optimal whereas the fault-tolerance is zero. At the other extreme, our results are inexact. We are only able to show that the information capacity is at least of the order of N log/sub 2/ N and N respectively, where N is the number of units. Our fault-tolerance results are even poorer, though nonzero. Nevertheless they do indicate a trade-off between information capacity and fault-tolerance as this parameter is varied from the first extreme to the second. We are also able to show that particular collections of patterns remain stable states as this parameter is varied, and fault-tolerance for them goes from zero at one extreme of this parameter to /spl Theta/(N/sup 2/) at the other extreme.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们定义了二元权Hopfield网络的容错度量,并将其与信息容量度量联系起来。利用这些度量,我们计算了采用二值权的Hopfield网络的容错性和信息容量。这些Hopfield网络由单个标量参数控制其权重和偏差。在该参数的一个极值中,我们证明了信息容量是最优的,而容错性为零。在另一个极端,我们的结果是不精确的。我们只能证明信息容量至少分别为N log/sub 2/ N和N阶,其中N为单元数。我们的容错结果甚至更差,尽管不是零。尽管如此,它们确实表明了信息容量和容错性之间的权衡,因为这个参数从第一个极端到第二个极端是不同的。我们还能够证明,当该参数变化时,特定的模式集合保持稳定状态,并且它们的容错性从该参数的一个极端的零到另一个极端的/spl Theta/(N/sup 2/)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Information capacity and fault tolerance of binary weights Hopfield nets
We define a measure for the fault-tolerance of binary weights Hopfield networks and relate it to a measure of information capacity. Using these measures, we compute results on the fault-tolerance and information capacity of certain Hopfield networks employing binary-valued weights. These Hopfield networks are governed by a single scalar parameter that controls their weights and biases. In one extreme value of this parameter, we show that the information capacity is optimal whereas the fault-tolerance is zero. At the other extreme, our results are inexact. We are only able to show that the information capacity is at least of the order of N log/sub 2/ N and N respectively, where N is the number of units. Our fault-tolerance results are even poorer, though nonzero. Nevertheless they do indicate a trade-off between information capacity and fault-tolerance as this parameter is varied from the first extreme to the second. We are also able to show that particular collections of patterns remain stable states as this parameter is varied, and fault-tolerance for them goes from zero at one extreme of this parameter to /spl Theta/(N/sup 2/) at the other extreme.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1