基于anogan的智能工厂边缘设备异常滤波

Donghyun Kim, Jae-Min Cha, Seokju Oh, Jongpil Jeong
{"title":"基于anogan的智能工厂边缘设备异常滤波","authors":"Donghyun Kim, Jae-Min Cha, Seokju Oh, Jongpil Jeong","doi":"10.1109/IMCOM51814.2021.9377409","DOIUrl":null,"url":null,"abstract":"Maintenance of production equipment and controlling products quality through data analysis are the main issues of smart factory. During production, detected data for analysis is showing abnormal data more than normal data. Therefore, there is lots of energy consumption for analysis, cost, and saving of data. Edge Device which applied deep learning algorithm is able to solve this problem. In this paper, a framework for data filtering method before data analysis is proposed through Anomaly detection using single board computer (SBC). Using Nvidia Jetson nano and desktop computer to compare and analyze the two virtual environments to determine the framework of optimum anomaly data filtering. AnoGAN is a deep learning model utilized for anomaly detection.","PeriodicalId":275121,"journal":{"name":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"AnoGAN-Based Anomaly Filtering for Intelligent Edge Device in Smart Factory\",\"authors\":\"Donghyun Kim, Jae-Min Cha, Seokju Oh, Jongpil Jeong\",\"doi\":\"10.1109/IMCOM51814.2021.9377409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maintenance of production equipment and controlling products quality through data analysis are the main issues of smart factory. During production, detected data for analysis is showing abnormal data more than normal data. Therefore, there is lots of energy consumption for analysis, cost, and saving of data. Edge Device which applied deep learning algorithm is able to solve this problem. In this paper, a framework for data filtering method before data analysis is proposed through Anomaly detection using single board computer (SBC). Using Nvidia Jetson nano and desktop computer to compare and analyze the two virtual environments to determine the framework of optimum anomaly data filtering. AnoGAN is a deep learning model utilized for anomaly detection.\",\"PeriodicalId\":275121,\"journal\":{\"name\":\"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCOM51814.2021.9377409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM51814.2021.9377409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

生产设备的维护和通过数据分析控制产品质量是智能工厂的主要问题。在生产过程中,用于分析的检测数据显示异常数据多于正常数据。因此,在分析、成本和数据保存方面存在大量的能耗。应用深度学习算法的边缘设备能够解决这一问题。本文提出了一种利用单板计算机(SBC)进行异常检测,在数据分析前进行数据过滤的框架。利用Nvidia Jetson nano和台式计算机对两种虚拟环境进行对比分析,确定最佳异常数据过滤框架。AnoGAN是一种用于异常检测的深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AnoGAN-Based Anomaly Filtering for Intelligent Edge Device in Smart Factory
Maintenance of production equipment and controlling products quality through data analysis are the main issues of smart factory. During production, detected data for analysis is showing abnormal data more than normal data. Therefore, there is lots of energy consumption for analysis, cost, and saving of data. Edge Device which applied deep learning algorithm is able to solve this problem. In this paper, a framework for data filtering method before data analysis is proposed through Anomaly detection using single board computer (SBC). Using Nvidia Jetson nano and desktop computer to compare and analyze the two virtual environments to determine the framework of optimum anomaly data filtering. AnoGAN is a deep learning model utilized for anomaly detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a Partially Verifiable Multi-party Multi-argument Zero-knowledge Proof EnvBERT: Multi-Label Text Classification for Imbalanced, Noisy Environmental News Data Method for Changing Users' Attitudes Towards Fashion Styling by Showing Evaluations After Coordinate Selection The Analysis of Web Search Snippets Displaying User's Knowledge An Energy Management System with Edge Computing for Industrial Facility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1