高光谱图像分割的集成聚类模型

Mengmeng Wu, Yuefeng Zhao, Liren Zhang, Jingjing Wang, Huaqiang Xu, Dongmei Wei
{"title":"高光谱图像分割的集成聚类模型","authors":"Mengmeng Wu, Yuefeng Zhao, Liren Zhang, Jingjing Wang, Huaqiang Xu, Dongmei Wei","doi":"10.1109/ICAIT.2017.8388945","DOIUrl":null,"url":null,"abstract":"In this paper, the method of ensemble clustering model of hyperspectral image segmentation is proposed. We select several abundant information and identifiable band from each hyperspectral face images cube using Principal Component Analysis, in order to alleviate the computation burden and improve the clustering performance. K-means base clustering is performed on the all selected bands respectively, and different initial clustering center values were given to each band. This solves the K-means over-reliance on the initial clustering center values. Finally, we use the automatic integration method based on factor graph to fuse the results of base clustering and gain the more robust cluster result.","PeriodicalId":376884,"journal":{"name":"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ensemble clustering model of hyperspectral image segmentation\",\"authors\":\"Mengmeng Wu, Yuefeng Zhao, Liren Zhang, Jingjing Wang, Huaqiang Xu, Dongmei Wei\",\"doi\":\"10.1109/ICAIT.2017.8388945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the method of ensemble clustering model of hyperspectral image segmentation is proposed. We select several abundant information and identifiable band from each hyperspectral face images cube using Principal Component Analysis, in order to alleviate the computation burden and improve the clustering performance. K-means base clustering is performed on the all selected bands respectively, and different initial clustering center values were given to each band. This solves the K-means over-reliance on the initial clustering center values. Finally, we use the automatic integration method based on factor graph to fuse the results of base clustering and gain the more robust cluster result.\",\"PeriodicalId\":376884,\"journal\":{\"name\":\"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIT.2017.8388945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT.2017.8388945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了基于集成聚类模型的高光谱图像分割方法。利用主成分分析方法从每个高光谱人脸图像立方体中选择信息丰富且可识别的条带,以减轻计算负担,提高聚类性能。对选取的所有波段分别进行K-means基聚类,并给予每个波段不同的初始聚类中心值。这解决了k均值对初始聚类中心值的过度依赖。最后,采用基于因子图的自动集成方法对基础聚类结果进行融合,得到更鲁棒的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble clustering model of hyperspectral image segmentation
In this paper, the method of ensemble clustering model of hyperspectral image segmentation is proposed. We select several abundant information and identifiable band from each hyperspectral face images cube using Principal Component Analysis, in order to alleviate the computation burden and improve the clustering performance. K-means base clustering is performed on the all selected bands respectively, and different initial clustering center values were given to each band. This solves the K-means over-reliance on the initial clustering center values. Finally, we use the automatic integration method based on factor graph to fuse the results of base clustering and gain the more robust cluster result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data fusion of heterogeneous network based on BP neural network and improved SEP Generation of PAM4 signal over 10-km multi core fiber using DMLs and photodiode Backstepping adaptive sliding mode control for the USV course tracking system Color demosaicking with the spatial alignment property of spectral Laplacians The principle and application of hyperspectral imaging technology in detection of handwriting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1