Samruddhi Patil, Ameya Wagh, Mitali Sawant, Saurav Panda, A. Bhopale
{"title":"设计和实现先进的自动校准线跟踪传感器的有色表面与白线","authors":"Samruddhi Patil, Ameya Wagh, Mitali Sawant, Saurav Panda, A. Bhopale","doi":"10.1109/ICPEICES.2016.7853535","DOIUrl":null,"url":null,"abstract":"This paper discusses the design and implementation of a 7 channel line sensor for line following robot having advanced functionalities such as software based automatic sensor calibration and individual threshold per sensor channel. Unlike traditional line sensors which work on black surfaces with a white line or vice versa, this sensor is designed to differentiate white line on any coloured surface. Thus this sensor can be implemented in robotics applications or in industries where different section's floors are assigned with different colours and robot navigates using line following. The system was implemented using light emitting diodes, phototransistor and an onboard microcontroller Arduino Mega 2560 which communicates with any navigation control system using serial communication. Moving average filters are implemented per channel to remove the fluctuations in the readings due to vibration of the sensor during locomotion. It then gives the error feedback or the offset of the white line from the centre, to the system that is corrected using Proportional-Integral-Derivative algorithm. It also takes care of non scaled readings of the line sensors due to ambient light by having separate threshold values for individual sensors making each sensor independent. The main aim of this paper is to highlight the use and need of a line following sensor capable of differentiating any background colours with white line and at different light conditions. Performance metrics were measured and compared to show tradeoffs between cost and performance.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and implementation of advanced auto calibrating line following sensor for coloured surfaces with a white line\",\"authors\":\"Samruddhi Patil, Ameya Wagh, Mitali Sawant, Saurav Panda, A. Bhopale\",\"doi\":\"10.1109/ICPEICES.2016.7853535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the design and implementation of a 7 channel line sensor for line following robot having advanced functionalities such as software based automatic sensor calibration and individual threshold per sensor channel. Unlike traditional line sensors which work on black surfaces with a white line or vice versa, this sensor is designed to differentiate white line on any coloured surface. Thus this sensor can be implemented in robotics applications or in industries where different section's floors are assigned with different colours and robot navigates using line following. The system was implemented using light emitting diodes, phototransistor and an onboard microcontroller Arduino Mega 2560 which communicates with any navigation control system using serial communication. Moving average filters are implemented per channel to remove the fluctuations in the readings due to vibration of the sensor during locomotion. It then gives the error feedback or the offset of the white line from the centre, to the system that is corrected using Proportional-Integral-Derivative algorithm. It also takes care of non scaled readings of the line sensors due to ambient light by having separate threshold values for individual sensors making each sensor independent. The main aim of this paper is to highlight the use and need of a line following sensor capable of differentiating any background colours with white line and at different light conditions. Performance metrics were measured and compared to show tradeoffs between cost and performance.\",\"PeriodicalId\":305942,\"journal\":{\"name\":\"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPEICES.2016.7853535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEICES.2016.7853535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
本文讨论了用于线路跟踪机器人的7通道线路传感器的设计和实现,该传感器具有基于软件的自动传感器校准和每个传感器通道的单独阈值等高级功能。不像传统的线传感器工作在黑色表面与白线,反之亦然,这种传感器是设计来区分白线在任何彩色表面。因此,这种传感器可以在机器人应用中实施,或者在不同部分的地板被分配不同的颜色,机器人使用线跟随导航的行业中。该系统使用发光二极管,光电晶体管和板载微控制器Arduino Mega 2560实现,该微控制器通过串行通信与任何导航控制系统通信。每个通道都实现了移动平均滤波器,以消除由于传感器在运动期间振动引起的读数波动。然后将误差反馈或白线离中心的偏移量反馈给使用比例-积分-导数算法进行校正的系统。它还通过对单个传感器具有单独的阈值,使每个传感器独立,从而照顾到由于环境光导致的线传感器的非缩放读数。本文的主要目的是强调使用和需要一个线跟随传感器能够区分任何背景颜色与白线和在不同的光条件。对性能指标进行测量和比较,以显示成本和性能之间的权衡。
Design and implementation of advanced auto calibrating line following sensor for coloured surfaces with a white line
This paper discusses the design and implementation of a 7 channel line sensor for line following robot having advanced functionalities such as software based automatic sensor calibration and individual threshold per sensor channel. Unlike traditional line sensors which work on black surfaces with a white line or vice versa, this sensor is designed to differentiate white line on any coloured surface. Thus this sensor can be implemented in robotics applications or in industries where different section's floors are assigned with different colours and robot navigates using line following. The system was implemented using light emitting diodes, phototransistor and an onboard microcontroller Arduino Mega 2560 which communicates with any navigation control system using serial communication. Moving average filters are implemented per channel to remove the fluctuations in the readings due to vibration of the sensor during locomotion. It then gives the error feedback or the offset of the white line from the centre, to the system that is corrected using Proportional-Integral-Derivative algorithm. It also takes care of non scaled readings of the line sensors due to ambient light by having separate threshold values for individual sensors making each sensor independent. The main aim of this paper is to highlight the use and need of a line following sensor capable of differentiating any background colours with white line and at different light conditions. Performance metrics were measured and compared to show tradeoffs between cost and performance.