利用浅连体卷积网络从立体图像对中有效估计深度

Juhee Park, Jeehyun Lee
{"title":"利用浅连体卷积网络从立体图像对中有效估计深度","authors":"Juhee Park, Jeehyun Lee","doi":"10.1109/IRIS.2017.8250124","DOIUrl":null,"url":null,"abstract":"We propose a cost effective depth estimation method using stereo camera and convolutional neural networks for SLAM algorithm. Convolutional neural networks outperform the traditional computer vision approaches in estimating depth of stereo image pairs. However, the performance gain of neural networks approach causes substantial increase in computation cost, which consequently decreases the operation time of mobile robots like domestic robots. To alleviate the high computation problem, this paper proposes quantized shallow Siamese convolutional neural networks which compute the similarity between patches of rectified stereo image pairs to estimate depth. Quantization of weights and reduction of layers in the neural networks can degrade the performance. To mitigate the performance degradation, this paper initially maximizes networks performance with three different methods of batch-normalization, optimal negative matching similarity training, and retraining with a global loss function. Then, the final retrained network is nonuniformly quantized. This non-uniform quantization provides efficient computation with the minimum performance loss. The final quantized shallow Siamese networks achieve 3.29% error rate for KITTI 2012.","PeriodicalId":213724,"journal":{"name":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A cost effective estimation of depth from stereo image pairs using shallow siamese convolutional networks\",\"authors\":\"Juhee Park, Jeehyun Lee\",\"doi\":\"10.1109/IRIS.2017.8250124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a cost effective depth estimation method using stereo camera and convolutional neural networks for SLAM algorithm. Convolutional neural networks outperform the traditional computer vision approaches in estimating depth of stereo image pairs. However, the performance gain of neural networks approach causes substantial increase in computation cost, which consequently decreases the operation time of mobile robots like domestic robots. To alleviate the high computation problem, this paper proposes quantized shallow Siamese convolutional neural networks which compute the similarity between patches of rectified stereo image pairs to estimate depth. Quantization of weights and reduction of layers in the neural networks can degrade the performance. To mitigate the performance degradation, this paper initially maximizes networks performance with three different methods of batch-normalization, optimal negative matching similarity training, and retraining with a global loss function. Then, the final retrained network is nonuniformly quantized. This non-uniform quantization provides efficient computation with the minimum performance loss. The final quantized shallow Siamese networks achieve 3.29% error rate for KITTI 2012.\",\"PeriodicalId\":213724,\"journal\":{\"name\":\"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRIS.2017.8250124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRIS.2017.8250124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对SLAM算法,提出了一种基于立体相机和卷积神经网络的低成本深度估计方法。卷积神经网络在立体图像对深度估计方面优于传统的计算机视觉方法。然而,神经网络方法的性能提升导致计算成本大幅增加,从而减少了家用机器人等移动机器人的运行时间。为了解决计算量大的问题,本文提出了量化的浅Siamese卷积神经网络,该网络通过计算校正后的立体图像对的patch之间的相似性来估计深度。神经网络中权重的量化和层数的减少会降低网络的性能。为了缓解性能下降,本文首先通过批归一化、最优负匹配相似度训练和全局损失函数再训练三种不同的方法最大化网络性能。然后,对最终的再训练网络进行非均匀量化。这种非均匀量化以最小的性能损失提供了高效的计算。最终量化的浅暹罗网络在KITTI 2012中达到了3.29%的错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A cost effective estimation of depth from stereo image pairs using shallow siamese convolutional networks
We propose a cost effective depth estimation method using stereo camera and convolutional neural networks for SLAM algorithm. Convolutional neural networks outperform the traditional computer vision approaches in estimating depth of stereo image pairs. However, the performance gain of neural networks approach causes substantial increase in computation cost, which consequently decreases the operation time of mobile robots like domestic robots. To alleviate the high computation problem, this paper proposes quantized shallow Siamese convolutional neural networks which compute the similarity between patches of rectified stereo image pairs to estimate depth. Quantization of weights and reduction of layers in the neural networks can degrade the performance. To mitigate the performance degradation, this paper initially maximizes networks performance with three different methods of batch-normalization, optimal negative matching similarity training, and retraining with a global loss function. Then, the final retrained network is nonuniformly quantized. This non-uniform quantization provides efficient computation with the minimum performance loss. The final quantized shallow Siamese networks achieve 3.29% error rate for KITTI 2012.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Twin-rotor MIMO system and its control using interval type-2 fuzzy logic Sit-to-stand and stand-to-sit crutch use for lower extremity powered exoskeletons Visual inspection system for smart manufacture of home appliances A novel clutch coupled nonholonomic wheeled mobile robot mechanism to mechanically minimize deduced reckoning error 3D object recognition from tactile data acquired at salient points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1