基于层次融合的多模式电子商务产品分类

Tsegaye Misikir Tashu, Sara Fattouh, Peter Kiss, Tomáš Horváth
{"title":"基于层次融合的多模式电子商务产品分类","authors":"Tsegaye Misikir Tashu, Sara Fattouh, Peter Kiss, Tomáš Horváth","doi":"10.1109/CITDS54976.2022.9914136","DOIUrl":null,"url":null,"abstract":"In this work, we present a multi-modal model for commercial product classification, that combines features extracted by multiple neural network models from textual (Camem-BERT and FlauBERT) and visual data (SE-ResNeXt-50), using simple fusion techniques. The proposed method significantly outperformed the performance of the unimodal models, as well as the reported performance of similar models on our specific task. We made experiments with multiple fusing techniques, and found, that the best preforming technique to combine the individual embedding of the unimodal network is based on the combination of concatenation and averaging the feature vectors. Each modality complemented the shortcomings of the other modalities, demonstrating that increasing the number of modalities can be an effective method for improving the performance of multi-label and multimodal classification problems.","PeriodicalId":271992,"journal":{"name":"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal E-Commerce Product Classification Using Hierarchical Fusion\",\"authors\":\"Tsegaye Misikir Tashu, Sara Fattouh, Peter Kiss, Tomáš Horváth\",\"doi\":\"10.1109/CITDS54976.2022.9914136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a multi-modal model for commercial product classification, that combines features extracted by multiple neural network models from textual (Camem-BERT and FlauBERT) and visual data (SE-ResNeXt-50), using simple fusion techniques. The proposed method significantly outperformed the performance of the unimodal models, as well as the reported performance of similar models on our specific task. We made experiments with multiple fusing techniques, and found, that the best preforming technique to combine the individual embedding of the unimodal network is based on the combination of concatenation and averaging the feature vectors. Each modality complemented the shortcomings of the other modalities, demonstrating that increasing the number of modalities can be an effective method for improving the performance of multi-label and multimodal classification problems.\",\"PeriodicalId\":271992,\"journal\":{\"name\":\"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITDS54976.2022.9914136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITDS54976.2022.9914136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一个用于商业产品分类的多模态模型,该模型使用简单的融合技术,将多个神经网络模型从文本(Camem-BERT和FlauBERT)和视觉数据(SE-ResNeXt-50)中提取的特征结合起来。所提出的方法明显优于单峰模型的性能,以及在我们的特定任务上报道的类似模型的性能。我们用多种融合技术进行了实验,发现将特征向量拼接和平均相结合是组合单峰网络单个嵌入的最佳预成型技术。每种模态都补充了其他模态的缺点,表明增加模态的数量可以是提高多标签和多模态分类问题性能的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal E-Commerce Product Classification Using Hierarchical Fusion
In this work, we present a multi-modal model for commercial product classification, that combines features extracted by multiple neural network models from textual (Camem-BERT and FlauBERT) and visual data (SE-ResNeXt-50), using simple fusion techniques. The proposed method significantly outperformed the performance of the unimodal models, as well as the reported performance of similar models on our specific task. We made experiments with multiple fusing techniques, and found, that the best preforming technique to combine the individual embedding of the unimodal network is based on the combination of concatenation and averaging the feature vectors. Each modality complemented the shortcomings of the other modalities, demonstrating that increasing the number of modalities can be an effective method for improving the performance of multi-label and multimodal classification problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of a typical cell in the uplink cellular network model using stochastic simulation Image sensor based steering signal for a digital actuator system Clustering-based customer representation learning from dynamic transactional data Joint Transmission Coordinated Multipoint on Mobile Users in 5G Heterogeneous Network Smart watch activity recognition using plot image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1