{"title":"用于降维和图像分类的薛定谔特征映射","authors":"Guoming Chen","doi":"10.1109/CISP-BMEI51763.2020.9263518","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Schroedinger Eigenmaps (SE) manifold learning and dimensionality reduction method on glaucoma image classification. The visualization of binary image recognition three dimensional electronic cloud image on the retinal fundus dataset shows that after quantum circuit diagram transformation, the recognition performance of the image data in the Schroedinger Eigenmaps (SE) manifold learning dimensionality reduction spatial distribution has been significantly improved for binary image classification.","PeriodicalId":346757,"journal":{"name":"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"63 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schroedinger Eigenmaps for Dimensionality Reduction and Image Classification\",\"authors\":\"Guoming Chen\",\"doi\":\"10.1109/CISP-BMEI51763.2020.9263518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a Schroedinger Eigenmaps (SE) manifold learning and dimensionality reduction method on glaucoma image classification. The visualization of binary image recognition three dimensional electronic cloud image on the retinal fundus dataset shows that after quantum circuit diagram transformation, the recognition performance of the image data in the Schroedinger Eigenmaps (SE) manifold learning dimensionality reduction spatial distribution has been significantly improved for binary image classification.\",\"PeriodicalId\":346757,\"journal\":{\"name\":\"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"63 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI51763.2020.9263518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI51763.2020.9263518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于薛定谔特征映射(SE)流形学习和降维的青光眼图像分类方法。二值图像识别三维电子云图在视网膜眼底数据集上的可视化表明,经过量子电路图变换后,图像数据在薛定谔特征映射(SE)流形学习降维空间分布下的识别性能得到了显著提高,用于二值图像分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Schroedinger Eigenmaps for Dimensionality Reduction and Image Classification
In this paper, we propose a Schroedinger Eigenmaps (SE) manifold learning and dimensionality reduction method on glaucoma image classification. The visualization of binary image recognition three dimensional electronic cloud image on the retinal fundus dataset shows that after quantum circuit diagram transformation, the recognition performance of the image data in the Schroedinger Eigenmaps (SE) manifold learning dimensionality reduction spatial distribution has been significantly improved for binary image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network Attack Detection based on Domain Attack Behavior Analysis Feature selection of time series based on reinforcement learning An Improved Double-Layer Kalman Filter Attitude Algorithm For Motion Capture System Probability Boltzmann Machine Network for Face Detection on Video Evolutionary Optimized Multiple Instance Concept Learning for Beat-to-Beat Heart Rate Estimation from Electrocardiograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1