软多模态数据融合

S. Coppock, L. Mazlack
{"title":"软多模态数据融合","authors":"S. Coppock, L. Mazlack","doi":"10.1109/FUZZ.2003.1209438","DOIUrl":null,"url":null,"abstract":"Clustering groups items together that are most similar to each other and sets those that are least similar into different clusters. Methods have been developed to cluster records in a data set that are of only qualitative or quantitative data. Data sets exist that contain a mix of qualitative (nominal and ordinal) and quantitative (discrete and continuous) data. Clustering records of mixed kinds of data is a difficult problem. A metric to measure the similarity between records of mixed data types is needed. Once a clustering is found, we do not know how to best evaluate the quality of the clustering when there is a mixture of data varieties.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Soft multi-modal data fusion\",\"authors\":\"S. Coppock, L. Mazlack\",\"doi\":\"10.1109/FUZZ.2003.1209438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering groups items together that are most similar to each other and sets those that are least similar into different clusters. Methods have been developed to cluster records in a data set that are of only qualitative or quantitative data. Data sets exist that contain a mix of qualitative (nominal and ordinal) and quantitative (discrete and continuous) data. Clustering records of mixed kinds of data is a difficult problem. A metric to measure the similarity between records of mixed data types is needed. Once a clustering is found, we do not know how to best evaluate the quality of the clustering when there is a mixture of data varieties.\",\"PeriodicalId\":212172,\"journal\":{\"name\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ.2003.1209438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1209438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

聚类将彼此最相似的项组合在一起,并将最不相似的项设置到不同的聚类中。已经开发出方法,在只有定性或定量数据的数据集中对记录进行聚类。存在的数据集包含定性(名义和有序)和定量(离散和连续)数据的混合。混合类型数据的记录聚类是一个难题。需要一个度量来度量混合数据类型记录之间的相似性。一旦发现了聚类,当存在混合数据品种时,我们不知道如何最好地评估聚类的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soft multi-modal data fusion
Clustering groups items together that are most similar to each other and sets those that are least similar into different clusters. Methods have been developed to cluster records in a data set that are of only qualitative or quantitative data. Data sets exist that contain a mix of qualitative (nominal and ordinal) and quantitative (discrete and continuous) data. Clustering records of mixed kinds of data is a difficult problem. A metric to measure the similarity between records of mixed data types is needed. Once a clustering is found, we do not know how to best evaluate the quality of the clustering when there is a mixture of data varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy flow-shop scheduling models based on credibility measure Morphological perceptrons with dendritic structure A validation procedure for fuzzy multiattribute decision making Context dependent information aggregation Traffic engineering with MPLS using fuzzy logic for application in IP networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1