DaViD显示摄像机通信发射机设计与同步概念

Jianshuang Xu, J. Klein, Christian Brauers, R. Kays
{"title":"DaViD显示摄像机通信发射机设计与同步概念","authors":"Jianshuang Xu, J. Klein, Christian Brauers, R. Kays","doi":"10.1109/WOCC.2019.8770659","DOIUrl":null,"url":null,"abstract":"Visible Light Communication is a promising technology for data transmission, which has become more and more relevant in recent years. Other than the common approach of modulated LED lighting, display-camera communication has become an attractive novel take on the concept. As outlined in earlier papers, the DaViD (Data Transmission Using Video Displays) system provides a modulation concept allowing for a data overlay onto video content which is nearly invisible to the viewer, i.e. causing hardly any perceptible degradation in video quality. This is achieved by differentially modulating the chrominance information of the underlying video frames with low amplitudes. The resulting color differences within the recorded images can be interpreted by the receiver, allowing for reconstruction of the transmitted data. In this paper, we introduce further system details and improvements to the DaViD concept. In addition to traditional transmission systems, on the display-camera link, the receiver has to be not only temporally but also spatially synchronized to the transmitter. We address the spatial synchronization problem by utilizing localization patterns for detecting the modulation area and a separate optimization on columns and rows for data resampling. Using a slight temporal oversampling, clean data frames can be reconstructed on the receiver side. Based on our modulation and coding concept, we achieve a data rate up to 34.56 Mbit/s in our current demonstration setup with hardly any visible degradation in video quality.","PeriodicalId":285172,"journal":{"name":"2019 28th Wireless and Optical Communications Conference (WOCC)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Transmitter Design and Synchronization Concepts for DaViD Display Camera Communication\",\"authors\":\"Jianshuang Xu, J. Klein, Christian Brauers, R. Kays\",\"doi\":\"10.1109/WOCC.2019.8770659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visible Light Communication is a promising technology for data transmission, which has become more and more relevant in recent years. Other than the common approach of modulated LED lighting, display-camera communication has become an attractive novel take on the concept. As outlined in earlier papers, the DaViD (Data Transmission Using Video Displays) system provides a modulation concept allowing for a data overlay onto video content which is nearly invisible to the viewer, i.e. causing hardly any perceptible degradation in video quality. This is achieved by differentially modulating the chrominance information of the underlying video frames with low amplitudes. The resulting color differences within the recorded images can be interpreted by the receiver, allowing for reconstruction of the transmitted data. In this paper, we introduce further system details and improvements to the DaViD concept. In addition to traditional transmission systems, on the display-camera link, the receiver has to be not only temporally but also spatially synchronized to the transmitter. We address the spatial synchronization problem by utilizing localization patterns for detecting the modulation area and a separate optimization on columns and rows for data resampling. Using a slight temporal oversampling, clean data frames can be reconstructed on the receiver side. Based on our modulation and coding concept, we achieve a data rate up to 34.56 Mbit/s in our current demonstration setup with hardly any visible degradation in video quality.\",\"PeriodicalId\":285172,\"journal\":{\"name\":\"2019 28th Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 28th Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2019.8770659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2019.8770659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

可见光通信是一种很有前途的数据传输技术,近年来受到越来越多的关注。除了调制LED照明的常见方法外,显示器-摄像机通信已经成为一种有吸引力的新概念。正如在早期的论文中概述的那样,DaViD(使用视频显示的数据传输)系统提供了一个调制概念,允许数据覆盖到视频内容上,这对观看者来说几乎是不可见的,也就是说,几乎不会引起视频质量的任何可察觉的下降。这是通过差分调制具有低幅度的底层视频帧的色度信息来实现的。在记录的图像中产生的色差可以由接收器解释,允许传输数据的重建。在本文中,我们进一步介绍了DaViD概念的系统细节和改进。除了传统的传输系统外,在显示-摄像机链路上,接收器不仅要在时间上而且要在空间上与发射器同步。我们通过利用定位模式来检测调制区域和对数据重采样的列和行进行单独优化来解决空间同步问题。使用轻微的时间过采样,可以在接收端重建干净的数据帧。基于我们的调制和编码概念,我们在目前的演示设置中实现了高达34.56 Mbit/s的数据速率,视频质量几乎没有任何明显的下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transmitter Design and Synchronization Concepts for DaViD Display Camera Communication
Visible Light Communication is a promising technology for data transmission, which has become more and more relevant in recent years. Other than the common approach of modulated LED lighting, display-camera communication has become an attractive novel take on the concept. As outlined in earlier papers, the DaViD (Data Transmission Using Video Displays) system provides a modulation concept allowing for a data overlay onto video content which is nearly invisible to the viewer, i.e. causing hardly any perceptible degradation in video quality. This is achieved by differentially modulating the chrominance information of the underlying video frames with low amplitudes. The resulting color differences within the recorded images can be interpreted by the receiver, allowing for reconstruction of the transmitted data. In this paper, we introduce further system details and improvements to the DaViD concept. In addition to traditional transmission systems, on the display-camera link, the receiver has to be not only temporally but also spatially synchronized to the transmitter. We address the spatial synchronization problem by utilizing localization patterns for detecting the modulation area and a separate optimization on columns and rows for data resampling. Using a slight temporal oversampling, clean data frames can be reconstructed on the receiver side. Based on our modulation and coding concept, we achieve a data rate up to 34.56 Mbit/s in our current demonstration setup with hardly any visible degradation in video quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rogue Base Station Detection Using A Machine Learning Approach Secrecy Performance Analysis for Hybrid Satellite Terrestrial Relay Networks with Multiple Eavesdroppers Challenges of Big Data Implementation in a Public Hospital Error Analysis of Single-Satellite Interference Source Positioning Based on Different Number of Co-Frequency Beams Design and Implementation of ΣΔ-3DT Based on Multi-Core DSP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1