使用支持向量机、mlp和AdaBoost进行乐器识别,并进行形式概念分析

Swati D. Patil, P. S. Sanjekar
{"title":"使用支持向量机、mlp和AdaBoost进行乐器识别,并进行形式概念分析","authors":"Swati D. Patil, P. S. Sanjekar","doi":"10.1109/ICISIM.2017.8122157","DOIUrl":null,"url":null,"abstract":"Musical instruments are consist of wide variety of domain so manual classification of these instruments is difficult and challenging task. To make the process of classifying musical instrument easy and less dependent on human supervision given system is designed. There are some algorithm are available for classification tsk from which we uses SVM, MLP and AdaBoost for better result. This system mainly designed for automatic classification of musical instrument using SVM, MLP and AdaBoost classifiers. Formal Concept Analysis technique is also applied to show relationship between musical instruments and their attributes. This system is evaluated with SVM, MLP and AdaBoost classifiers which show that AdaBoost gives better result than SVM and MLP.","PeriodicalId":139000,"journal":{"name":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Musical instrument identification using SVM, MLP& AdaBoost with formal concept analysis\",\"authors\":\"Swati D. Patil, P. S. Sanjekar\",\"doi\":\"10.1109/ICISIM.2017.8122157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Musical instruments are consist of wide variety of domain so manual classification of these instruments is difficult and challenging task. To make the process of classifying musical instrument easy and less dependent on human supervision given system is designed. There are some algorithm are available for classification tsk from which we uses SVM, MLP and AdaBoost for better result. This system mainly designed for automatic classification of musical instrument using SVM, MLP and AdaBoost classifiers. Formal Concept Analysis technique is also applied to show relationship between musical instruments and their attributes. This system is evaluated with SVM, MLP and AdaBoost classifiers which show that AdaBoost gives better result than SVM and MLP.\",\"PeriodicalId\":139000,\"journal\":{\"name\":\"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIM.2017.8122157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIM.2017.8122157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

乐器是由各种各样的领域组成的,因此对这些乐器进行人工分类是一项困难而具有挑战性的任务。为了使乐器分类过程简单易行,减少对人工监督的依赖,设计了给定的系统。有一些算法可以用于分类任务,我们使用SVM, MLP和AdaBoost来获得更好的结果。本系统主要采用SVM、MLP和AdaBoost分类器对乐器进行自动分类。形式概念分析技术也应用于乐器及其属性之间的关系。用支持向量机、MLP和AdaBoost分类器对该系统进行了评价,结果表明AdaBoost分类器的分类效果优于支持向量机和MLP分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Musical instrument identification using SVM, MLP& AdaBoost with formal concept analysis
Musical instruments are consist of wide variety of domain so manual classification of these instruments is difficult and challenging task. To make the process of classifying musical instrument easy and less dependent on human supervision given system is designed. There are some algorithm are available for classification tsk from which we uses SVM, MLP and AdaBoost for better result. This system mainly designed for automatic classification of musical instrument using SVM, MLP and AdaBoost classifiers. Formal Concept Analysis technique is also applied to show relationship between musical instruments and their attributes. This system is evaluated with SVM, MLP and AdaBoost classifiers which show that AdaBoost gives better result than SVM and MLP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid technique for splice site prediction Information fusion for images on FPGA: Pixel level with pseudo color Hierarchical document clustering based on cosine similarity measure Embedded home surveillance system with pyroelectric infrared sensor using GSM Healthcare data modeling in R
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1