基于主成分分析的模糊聚类

Min-Zong Rau, C. Yeh, Shie-Jue Lee
{"title":"基于主成分分析的模糊聚类","authors":"Min-Zong Rau, C. Yeh, Shie-Jue Lee","doi":"10.1109/ICMLC.2010.5580756","DOIUrl":null,"url":null,"abstract":"We propose a clustering algorithm which incorporates a similarity-based fuzzy clustering and principal component analysis. The proposed algorithm is capable of discovering clusters with hyper-spherical, hyper-ellipsoidal, or oblique hyper-ellipsoidal shapes. Besides, the number of the clusters need not be specified in advance by the user. For a given dataset, the orientation, locations, and the number of clusters obtained can truthfully reflect the characteristics of the dataset. Experimental results, obtained by running on datasets generated synthetically, show that our method performs better than other methods.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fuzzy clustering with principal component analysis\",\"authors\":\"Min-Zong Rau, C. Yeh, Shie-Jue Lee\",\"doi\":\"10.1109/ICMLC.2010.5580756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a clustering algorithm which incorporates a similarity-based fuzzy clustering and principal component analysis. The proposed algorithm is capable of discovering clusters with hyper-spherical, hyper-ellipsoidal, or oblique hyper-ellipsoidal shapes. Besides, the number of the clusters need not be specified in advance by the user. For a given dataset, the orientation, locations, and the number of clusters obtained can truthfully reflect the characteristics of the dataset. Experimental results, obtained by running on datasets generated synthetically, show that our method performs better than other methods.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5580756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于相似度的模糊聚类和主成分分析相结合的聚类算法。该算法能够发现具有超球形、超椭球或斜超椭球形状的簇。此外,用户不需要预先指定集群的数量。对于给定的数据集,得到的聚类的方向、位置和数量能够真实地反映数据集的特征。在综合生成的数据集上运行的实验结果表明,该方法的性能优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy clustering with principal component analysis
We propose a clustering algorithm which incorporates a similarity-based fuzzy clustering and principal component analysis. The proposed algorithm is capable of discovering clusters with hyper-spherical, hyper-ellipsoidal, or oblique hyper-ellipsoidal shapes. Besides, the number of the clusters need not be specified in advance by the user. For a given dataset, the orientation, locations, and the number of clusters obtained can truthfully reflect the characteristics of the dataset. Experimental results, obtained by running on datasets generated synthetically, show that our method performs better than other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Does joint decoding really outperform cascade processing in English-to-Chinese transliteration generation? The role of syllabification The design of energy-saving filtering mechanism for sensor networks Feature-based approach combined with hierarchical classifying strategy to relation extraction The comparative study of different Bayesian classifier models New inverse halftoning using texture-and lookup table-based learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1