{"title":"通信网络中基于稀疏贝叶斯的报警序列预测","authors":"Li Tong-yan, Chen Chao","doi":"10.1109/MEC.2011.6025936","DOIUrl":null,"url":null,"abstract":"Learning to predict communication faults from alarm sequences is an important, real-world problem in communication networks. There are various methods from the areas of statistics and data mining for this purpose. In order to improve predictive efficiency, we propose a prediction with Sparse Bayesian Method (PSBM) in this paper. Furthermore, we also provide the mathematical formulation of the approach. Compared with Support Vector Machine (SVM) method, the new predictive algorithm not only has the same performance of prediction, but also has more accuracy with fewer predictive errors. In particular, our experimental results show that PSBM has only 70% number errors of SVM in the same test environment.","PeriodicalId":386083,"journal":{"name":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alarm sequences forecasting based on sparse Bayesian in communication networks\",\"authors\":\"Li Tong-yan, Chen Chao\",\"doi\":\"10.1109/MEC.2011.6025936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning to predict communication faults from alarm sequences is an important, real-world problem in communication networks. There are various methods from the areas of statistics and data mining for this purpose. In order to improve predictive efficiency, we propose a prediction with Sparse Bayesian Method (PSBM) in this paper. Furthermore, we also provide the mathematical formulation of the approach. Compared with Support Vector Machine (SVM) method, the new predictive algorithm not only has the same performance of prediction, but also has more accuracy with fewer predictive errors. In particular, our experimental results show that PSBM has only 70% number errors of SVM in the same test environment.\",\"PeriodicalId\":386083,\"journal\":{\"name\":\"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEC.2011.6025936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEC.2011.6025936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alarm sequences forecasting based on sparse Bayesian in communication networks
Learning to predict communication faults from alarm sequences is an important, real-world problem in communication networks. There are various methods from the areas of statistics and data mining for this purpose. In order to improve predictive efficiency, we propose a prediction with Sparse Bayesian Method (PSBM) in this paper. Furthermore, we also provide the mathematical formulation of the approach. Compared with Support Vector Machine (SVM) method, the new predictive algorithm not only has the same performance of prediction, but also has more accuracy with fewer predictive errors. In particular, our experimental results show that PSBM has only 70% number errors of SVM in the same test environment.