优化FPGA降低功耗的有效互连电容

Safeen Huda, J. Anderson, H. Tamura
{"title":"优化FPGA降低功耗的有效互连电容","authors":"Safeen Huda, J. Anderson, H. Tamura","doi":"10.1145/2554688.2554788","DOIUrl":null,"url":null,"abstract":"We propose a technique to reduce the effective parasitic capacitance of interconnect routing conductors in a bid to simultaneously reduce power consumption and improve delay. The parasitic capacitance reduction is achieved by ensuring routing conductors adjacent to those used by timing critical or high activity nets are left floating - disconnected from either VDD or GND. In doing so, the effective coupling capacitance between the conductors is reduced, because the original coupling capacitance between the conductors is placed in series with other capacitances in the circuit (series combinations of capacitors correspond to lower effective capacitance). To ensure unused conductors can be allowed to float requires the use of tri-state routing buffers, and to that end, we also propose low-cost tri-state buffer circuitry. We also introduce CAD techniques to maximize the likelihood that unused routing conductors are made to be adjacent to those used by nets with high activity or low slack, improving both power and speed. Results show that interconnect dynamic power reductions of up to ~15.5% are expected to be achieved with a critical path degradation of ~1%, and a total area overhead of ~2.1%.","PeriodicalId":390562,"journal":{"name":"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Optimizing effective interconnect capacitance for FPGA power reduction\",\"authors\":\"Safeen Huda, J. Anderson, H. Tamura\",\"doi\":\"10.1145/2554688.2554788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a technique to reduce the effective parasitic capacitance of interconnect routing conductors in a bid to simultaneously reduce power consumption and improve delay. The parasitic capacitance reduction is achieved by ensuring routing conductors adjacent to those used by timing critical or high activity nets are left floating - disconnected from either VDD or GND. In doing so, the effective coupling capacitance between the conductors is reduced, because the original coupling capacitance between the conductors is placed in series with other capacitances in the circuit (series combinations of capacitors correspond to lower effective capacitance). To ensure unused conductors can be allowed to float requires the use of tri-state routing buffers, and to that end, we also propose low-cost tri-state buffer circuitry. We also introduce CAD techniques to maximize the likelihood that unused routing conductors are made to be adjacent to those used by nets with high activity or low slack, improving both power and speed. Results show that interconnect dynamic power reductions of up to ~15.5% are expected to be achieved with a critical path degradation of ~1%, and a total area overhead of ~2.1%.\",\"PeriodicalId\":390562,\"journal\":{\"name\":\"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2554688.2554788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554688.2554788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们提出了一种降低互连布线导体的有效寄生电容的技术,以同时降低功耗和改善延迟。寄生电容的减少是通过确保与时序关键或高活度网络使用的导线相邻的布线导体保持浮动来实现的-与VDD或GND断开连接。这样做会降低导体之间的有效耦合电容,因为导体之间的原始耦合电容与电路中的其他电容串联(电容器的串联组合对应于较低的有效电容)。为了确保未使用的导体可以被允许浮动,需要使用三态路由缓冲,为此,我们还提出了低成本的三态缓冲电路。我们还引入了CAD技术,以最大限度地提高未使用的布线导线与高活动性或低松弛性的网络使用的导线相邻的可能性,从而提高功率和速度。结果表明,在关键路径退化约为1%、总面积开销约为2.1%的情况下,互连动态功耗可降低约15.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing effective interconnect capacitance for FPGA power reduction
We propose a technique to reduce the effective parasitic capacitance of interconnect routing conductors in a bid to simultaneously reduce power consumption and improve delay. The parasitic capacitance reduction is achieved by ensuring routing conductors adjacent to those used by timing critical or high activity nets are left floating - disconnected from either VDD or GND. In doing so, the effective coupling capacitance between the conductors is reduced, because the original coupling capacitance between the conductors is placed in series with other capacitances in the circuit (series combinations of capacitors correspond to lower effective capacitance). To ensure unused conductors can be allowed to float requires the use of tri-state routing buffers, and to that end, we also propose low-cost tri-state buffer circuitry. We also introduce CAD techniques to maximize the likelihood that unused routing conductors are made to be adjacent to those used by nets with high activity or low slack, improving both power and speed. Results show that interconnect dynamic power reductions of up to ~15.5% are expected to be achieved with a critical path degradation of ~1%, and a total area overhead of ~2.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy-efficient multiplier-less discrete convolver through probabilistic domain transformation Revisiting and-inverter cones Pushing the performance boundary of linear projection designs through device specific optimisations (abstract only) MORP: makespan optimization for processors with an embedded reconfigurable fabric Co-processing with dynamic reconfiguration on heterogeneous MPSoC: practices and design tradeoffs (abstract only)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1