L. E. D. S. Amorim, M. Steindorfer, Sebastian Erdweg, E. Visser
{"title":"缩进规则的声明性规范:解析和美观打印布局敏感语言的工具视角","authors":"L. E. D. S. Amorim, M. Steindorfer, Sebastian Erdweg, E. Visser","doi":"10.1145/3276604.3276607","DOIUrl":null,"url":null,"abstract":"In layout-sensitive languages, the indentation of an expression or statement can influence how a program is parsed. While some of these languages (e.g., Haskell and Python) have been widely adopted, there is little support for software language engineers in building tools for layout-sensitive languages. As a result, parsers, pretty-printers, program analyses, and refactoring tools often need to be handwritten, which decreases the maintainability and extensibility of these tools. Even state-of-the-art language workbenches have little support for layout-sensitive languages, restricting the development and prototyping of such languages. In this paper, we introduce a novel approach to declarative specification of layout-sensitive languages using layout declarations. Layout declarations are high-level specifications of indentation rules that abstract from low-level technicalities. We show how to derive an efficient layout-sensitive generalized parser and a corresponding pretty-printer automatically from a language specification with layout declarations. We validate our approach in a case-study using a syntax definition for the Haskell programming language, investigating the performance of the generated parser and the correctness of the generated pretty-printer against 22191 Haskell files.","PeriodicalId":117525,"journal":{"name":"Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Declarative specification of indentation rules: a tooling perspective on parsing and pretty-printing layout-sensitive languages\",\"authors\":\"L. E. D. S. Amorim, M. Steindorfer, Sebastian Erdweg, E. Visser\",\"doi\":\"10.1145/3276604.3276607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In layout-sensitive languages, the indentation of an expression or statement can influence how a program is parsed. While some of these languages (e.g., Haskell and Python) have been widely adopted, there is little support for software language engineers in building tools for layout-sensitive languages. As a result, parsers, pretty-printers, program analyses, and refactoring tools often need to be handwritten, which decreases the maintainability and extensibility of these tools. Even state-of-the-art language workbenches have little support for layout-sensitive languages, restricting the development and prototyping of such languages. In this paper, we introduce a novel approach to declarative specification of layout-sensitive languages using layout declarations. Layout declarations are high-level specifications of indentation rules that abstract from low-level technicalities. We show how to derive an efficient layout-sensitive generalized parser and a corresponding pretty-printer automatically from a language specification with layout declarations. We validate our approach in a case-study using a syntax definition for the Haskell programming language, investigating the performance of the generated parser and the correctness of the generated pretty-printer against 22191 Haskell files.\",\"PeriodicalId\":117525,\"journal\":{\"name\":\"Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3276604.3276607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3276604.3276607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Declarative specification of indentation rules: a tooling perspective on parsing and pretty-printing layout-sensitive languages
In layout-sensitive languages, the indentation of an expression or statement can influence how a program is parsed. While some of these languages (e.g., Haskell and Python) have been widely adopted, there is little support for software language engineers in building tools for layout-sensitive languages. As a result, parsers, pretty-printers, program analyses, and refactoring tools often need to be handwritten, which decreases the maintainability and extensibility of these tools. Even state-of-the-art language workbenches have little support for layout-sensitive languages, restricting the development and prototyping of such languages. In this paper, we introduce a novel approach to declarative specification of layout-sensitive languages using layout declarations. Layout declarations are high-level specifications of indentation rules that abstract from low-level technicalities. We show how to derive an efficient layout-sensitive generalized parser and a corresponding pretty-printer automatically from a language specification with layout declarations. We validate our approach in a case-study using a syntax definition for the Haskell programming language, investigating the performance of the generated parser and the correctness of the generated pretty-printer against 22191 Haskell files.