面向CNN模型训练的分布式伤口处理优化方法——基于MNIST数据集的分析

Hiram Ponce, E. Moya-Albor, J. Brieva
{"title":"面向CNN模型训练的分布式伤口处理优化方法——基于MNIST数据集的分析","authors":"Hiram Ponce, E. Moya-Albor, J. Brieva","doi":"10.1109/ISADS56919.2023.10092078","DOIUrl":null,"url":null,"abstract":"Convolutional neural network (CNN) is a prominent algorithm in Deep Learning methods. CNN architectures have been used successfully to solve various problems in image processing, for example, segmentation, classification, and enhancement task. However, automatic search for suitable architectures and training parameters remain an open area of research, where metaheuristic algorithms have been used to fine-tuning the hyperparameters and learning parameters. This work presents a bio-inspired distributed strategy based on Wound Treatment optimization (WTO) for training the learning parameters of a LenNet CNN model fast and accurate. The proposed method was evaluated over the popular benchmark dataset MNIST for handwritten digit recognition. Experimental results showed an improvement of 36.87% in training time using the distributed WTO method compared to the baseline with a single learning agent, and the accuracy increases 4.69% more using the proposed method in contrast with the baseline. As this is a preliminary study towards the distributed WTO method for training CNN models, we anticipate this approach can be used in robotics, multi-agent systems, federated learning, complex optimization problems, and many others, where an optimization task is required to be solved fast and accurate.","PeriodicalId":412453,"journal":{"name":"2023 IEEE 15th International Symposium on Autonomous Decentralized System (ISADS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards the Distributed Wound Treatment Optimization Method for Training CNN Models: Analysis on the MNIST Dataset\",\"authors\":\"Hiram Ponce, E. Moya-Albor, J. Brieva\",\"doi\":\"10.1109/ISADS56919.2023.10092078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural network (CNN) is a prominent algorithm in Deep Learning methods. CNN architectures have been used successfully to solve various problems in image processing, for example, segmentation, classification, and enhancement task. However, automatic search for suitable architectures and training parameters remain an open area of research, where metaheuristic algorithms have been used to fine-tuning the hyperparameters and learning parameters. This work presents a bio-inspired distributed strategy based on Wound Treatment optimization (WTO) for training the learning parameters of a LenNet CNN model fast and accurate. The proposed method was evaluated over the popular benchmark dataset MNIST for handwritten digit recognition. Experimental results showed an improvement of 36.87% in training time using the distributed WTO method compared to the baseline with a single learning agent, and the accuracy increases 4.69% more using the proposed method in contrast with the baseline. As this is a preliminary study towards the distributed WTO method for training CNN models, we anticipate this approach can be used in robotics, multi-agent systems, federated learning, complex optimization problems, and many others, where an optimization task is required to be solved fast and accurate.\",\"PeriodicalId\":412453,\"journal\":{\"name\":\"2023 IEEE 15th International Symposium on Autonomous Decentralized System (ISADS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 15th International Symposium on Autonomous Decentralized System (ISADS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISADS56919.2023.10092078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 15th International Symposium on Autonomous Decentralized System (ISADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISADS56919.2023.10092078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)是深度学习方法中的一个突出算法。CNN架构已经成功地用于解决图像处理中的各种问题,例如分割、分类和增强任务。然而,自动搜索合适的架构和训练参数仍然是一个开放的研究领域,其中元启发式算法已被用于微调超参数和学习参数。本文提出了一种基于伤口处理优化(WTO)的仿生分布式策略,用于快速准确地训练LenNet CNN模型的学习参数。在手写数字识别的常用基准数据集MNIST上对该方法进行了评估。实验结果表明,使用分布式WTO方法的训练时间比使用单一学习主体的基线提高了36.87%,准确率比基线提高了4.69%。由于这是对训练CNN模型的分布式WTO方法的初步研究,我们预计这种方法可以用于机器人、多智能体系统、联邦学习、复杂优化问题以及许多其他需要快速准确解决优化任务的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards the Distributed Wound Treatment Optimization Method for Training CNN Models: Analysis on the MNIST Dataset
Convolutional neural network (CNN) is a prominent algorithm in Deep Learning methods. CNN architectures have been used successfully to solve various problems in image processing, for example, segmentation, classification, and enhancement task. However, automatic search for suitable architectures and training parameters remain an open area of research, where metaheuristic algorithms have been used to fine-tuning the hyperparameters and learning parameters. This work presents a bio-inspired distributed strategy based on Wound Treatment optimization (WTO) for training the learning parameters of a LenNet CNN model fast and accurate. The proposed method was evaluated over the popular benchmark dataset MNIST for handwritten digit recognition. Experimental results showed an improvement of 36.87% in training time using the distributed WTO method compared to the baseline with a single learning agent, and the accuracy increases 4.69% more using the proposed method in contrast with the baseline. As this is a preliminary study towards the distributed WTO method for training CNN models, we anticipate this approach can be used in robotics, multi-agent systems, federated learning, complex optimization problems, and many others, where an optimization task is required to be solved fast and accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A pipeline to collaborative AI models creation between Brazilian governmental institutions Policy-Based Task Allocation at Runtime for a Self-Adaptive Edge Computing Infrastructure A Computer Vision Approach to Terminus Movement Analysis of Viedma Glacier An Approach to Workload Generation for Cloud Benchmarking: a View from Alibaba Trace Design of a Soft Gripper Hand for a Quadruped Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1