不同加热方式原位成形Fe-50%TiC复合材料的显微硬度和显微组织

Melih Koçyi̇ği̇t, H. E. Çamurlu
{"title":"不同加热方式原位成形Fe-50%TiC复合材料的显微硬度和显微组织","authors":"Melih Koçyi̇ği̇t, H. E. Çamurlu","doi":"10.54287/gujsa.1173307","DOIUrl":null,"url":null,"abstract":"The aim of this study is to fabricate in-situ TiC particle reinforced Fe matrix composites via volume combustion synthesis (VCS) through heating by two different sources. One group of reactant pellets was ignited by heating in an induction furnace (IF). The other group was ignited via heating by using a tungsten inert gas (TIG) torch. Thus, the differences in the microhardness and microstructure of the obtained composites could be compared. Fe, C and Ti elemental powders were used to obtain composites that contained 50 vol. % TiC in the Fe matrix. In the repeated experiments, the ignition temperatures of the IF pellets were found to be in 1164-1184 oC range. The formation of composites was verified by X-ray diffraction (XRD) analyses, where it was seen that the products were composed of TiC and Fe with trace impurity phase. Scanning electron microscope (SEM) examinations showed that the in-situ formed TiC particles were regularly distributed in matrix in both series. The TiC particles obtained by TIG heating were about 5 times larger than the particles obtained by induction heating. Microhardness values of the samples were higher in IF series as compared to TIG series. It was shown that 50 vol. % TiC particle reinforced Fe matrix composites could be obtained by both heating methods. TIG was found to be a much practical method, when compared to conducting VCS in a furnace.","PeriodicalId":134301,"journal":{"name":"Gazi University Journal of Science Part A: Engineering and Innovation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microhardness and Microstructure of In-Situ Formed Fe-50%TiC Composites by Different Heating Methods\",\"authors\":\"Melih Koçyi̇ği̇t, H. E. Çamurlu\",\"doi\":\"10.54287/gujsa.1173307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to fabricate in-situ TiC particle reinforced Fe matrix composites via volume combustion synthesis (VCS) through heating by two different sources. One group of reactant pellets was ignited by heating in an induction furnace (IF). The other group was ignited via heating by using a tungsten inert gas (TIG) torch. Thus, the differences in the microhardness and microstructure of the obtained composites could be compared. Fe, C and Ti elemental powders were used to obtain composites that contained 50 vol. % TiC in the Fe matrix. In the repeated experiments, the ignition temperatures of the IF pellets were found to be in 1164-1184 oC range. The formation of composites was verified by X-ray diffraction (XRD) analyses, where it was seen that the products were composed of TiC and Fe with trace impurity phase. Scanning electron microscope (SEM) examinations showed that the in-situ formed TiC particles were regularly distributed in matrix in both series. The TiC particles obtained by TIG heating were about 5 times larger than the particles obtained by induction heating. Microhardness values of the samples were higher in IF series as compared to TIG series. It was shown that 50 vol. % TiC particle reinforced Fe matrix composites could be obtained by both heating methods. TIG was found to be a much practical method, when compared to conducting VCS in a furnace.\",\"PeriodicalId\":134301,\"journal\":{\"name\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54287/gujsa.1173307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gazi University Journal of Science Part A: Engineering and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54287/gujsa.1173307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过两种不同的热源加热,通过体积燃烧合成(VCS)制备原位TiC颗粒增强铁基复合材料。一组反应物球团在感应炉(IF)中加热点燃。另一组用钨惰性气体(TIG)火炬加热点燃。因此,可以比较得到的复合材料的显微硬度和显微组织的差异。采用Fe、C和Ti元素粉末制备了TiC含量为50 vol. %的复合材料。在重复实验中,发现IF球团的着火温度在1164 ~ 1184℃之间。通过x射线衍射(XRD)分析证实了复合材料的形成,产物由TiC和Fe组成,并伴有微量杂质相。扫描电镜(SEM)分析表明,原位形成的TiC颗粒在基体中有规律地分布。TIG加热得到的TiC颗粒比感应加热得到的TiC颗粒大5倍左右。与TIG系列相比,IF系列样品的显微硬度值更高。结果表明,两种加热方法均可获得体积分数为50%的TiC颗粒增强铁基复合材料。与在炉中传导VCS相比,TIG是一种更实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microhardness and Microstructure of In-Situ Formed Fe-50%TiC Composites by Different Heating Methods
The aim of this study is to fabricate in-situ TiC particle reinforced Fe matrix composites via volume combustion synthesis (VCS) through heating by two different sources. One group of reactant pellets was ignited by heating in an induction furnace (IF). The other group was ignited via heating by using a tungsten inert gas (TIG) torch. Thus, the differences in the microhardness and microstructure of the obtained composites could be compared. Fe, C and Ti elemental powders were used to obtain composites that contained 50 vol. % TiC in the Fe matrix. In the repeated experiments, the ignition temperatures of the IF pellets were found to be in 1164-1184 oC range. The formation of composites was verified by X-ray diffraction (XRD) analyses, where it was seen that the products were composed of TiC and Fe with trace impurity phase. Scanning electron microscope (SEM) examinations showed that the in-situ formed TiC particles were regularly distributed in matrix in both series. The TiC particles obtained by TIG heating were about 5 times larger than the particles obtained by induction heating. Microhardness values of the samples were higher in IF series as compared to TIG series. It was shown that 50 vol. % TiC particle reinforced Fe matrix composites could be obtained by both heating methods. TIG was found to be a much practical method, when compared to conducting VCS in a furnace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Conceptual Model to Measure Digital Maturity Level in Electricity Distribution Companies On the voltage dependent series resistance, interface traps, and conduction mechanisms in the Al/(Ti-doped DLC)/p-Si/Au Schottky Diodes (SDs) Study on the optical and gas-sensing performance of Zn-doped CuO films Strontium Accumulations by Teucrium polium which Grows Naturally in Serpentine Soils Falling Body Motion in Time Scale Calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1