开发RFML直觉:一个自动调制分类架构案例研究

William H. Clark, Vanessa Arndorfer, Brook Tamir, Daniel Kim, Cristian Vives, Hunter Morris, Lauren J. Wong, W. Headley
{"title":"开发RFML直觉:一个自动调制分类架构案例研究","authors":"William H. Clark, Vanessa Arndorfer, Brook Tamir, Daniel Kim, Cristian Vives, Hunter Morris, Lauren J. Wong, W. Headley","doi":"10.1109/MILCOM47813.2019.9020949","DOIUrl":null,"url":null,"abstract":"The application of machine learning to Automatic Modulation Classification (AMC) has typically used transfer learning from architectures found in the image classification domain. This work examines deviations from the image classification architectures by drawing from traditional expert feature systems within the AMC domain. Two types of ‘expert architectures’ are contrasted against the traditional image processing architectures; the first utilizes a more traditional one-versus-all binary classification with decision fusion approach, while the second inherits a hierarchical decision tree structure that leverages expert knowledge of the classes. When compared with a typical image processing architecture there are marginal classifier performance gains associated with the structures taken from expert AMC systems; however, the expert architectures allow for greater intuition, adaptability, and future-proofing in general.","PeriodicalId":371812,"journal":{"name":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Developing RFML Intuition: An Automatic Modulation Classification Architecture Case Study\",\"authors\":\"William H. Clark, Vanessa Arndorfer, Brook Tamir, Daniel Kim, Cristian Vives, Hunter Morris, Lauren J. Wong, W. Headley\",\"doi\":\"10.1109/MILCOM47813.2019.9020949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of machine learning to Automatic Modulation Classification (AMC) has typically used transfer learning from architectures found in the image classification domain. This work examines deviations from the image classification architectures by drawing from traditional expert feature systems within the AMC domain. Two types of ‘expert architectures’ are contrasted against the traditional image processing architectures; the first utilizes a more traditional one-versus-all binary classification with decision fusion approach, while the second inherits a hierarchical decision tree structure that leverages expert knowledge of the classes. When compared with a typical image processing architecture there are marginal classifier performance gains associated with the structures taken from expert AMC systems; however, the expert architectures allow for greater intuition, adaptability, and future-proofing in general.\",\"PeriodicalId\":371812,\"journal\":{\"name\":\"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM47813.2019.9020949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM47813.2019.9020949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

机器学习在自动调制分类(AMC)中的应用通常使用从图像分类领域中发现的架构迁移学习。这项工作通过从传统的专家特征系统中提取AMC域内的图像分类体系结构来检查偏差。将两种类型的“专家架构”与传统的图像处理架构进行了对比;第一种方法利用更传统的具有决策融合方法的“一对全”二元分类,而第二种方法继承了利用类的专家知识的分层决策树结构。与典型的图像处理架构相比,从专家AMC系统中获取的结构会带来边际分类器性能提升;然而,专家体系结构通常具有更强的直觉性、适应性和前瞻性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing RFML Intuition: An Automatic Modulation Classification Architecture Case Study
The application of machine learning to Automatic Modulation Classification (AMC) has typically used transfer learning from architectures found in the image classification domain. This work examines deviations from the image classification architectures by drawing from traditional expert feature systems within the AMC domain. Two types of ‘expert architectures’ are contrasted against the traditional image processing architectures; the first utilizes a more traditional one-versus-all binary classification with decision fusion approach, while the second inherits a hierarchical decision tree structure that leverages expert knowledge of the classes. When compared with a typical image processing architecture there are marginal classifier performance gains associated with the structures taken from expert AMC systems; however, the expert architectures allow for greater intuition, adaptability, and future-proofing in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomic Clustering in Temporal Network Graphs Combined Interference and Communications Strategy as a Defense Mechanism in Cognitive Radio Military Networks Data Association for Tracking Extended Targets Multi-Domain Effects and the Internet of Battlefield Things The Case for Robust Adaptation: Autonomic Resource Management is a Vulnerability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1