基于触觉的织物学习和分类体系结构

Abdul Attayyab Khan, M. Khosravi, S. Denei, P. Maiolino, Włodzimierz Kasprzak, F. Mastrogiovanni, G. Cannata
{"title":"基于触觉的织物学习和分类体系结构","authors":"Abdul Attayyab Khan, M. Khosravi, S. Denei, P. Maiolino, Włodzimierz Kasprzak, F. Mastrogiovanni, G. Cannata","doi":"10.1109/ICIAFS.2016.7946535","DOIUrl":null,"url":null,"abstract":"This paper proposes an architecture for tactile-based fabric learning and classification. The architecture is based on a number of SVM-based learning units, which we call fabric classification cores, specifically trained to discriminate between two fabrics. Each core is based on a specific subset of the fully available set of features, on the basis of their discriminative value, determined using the p-value. During fabric recognition, each core casts a vote. The architecture collects votes and provides an overall classification result. We tested seventeen different fabrics, and the result showed that classification errors are negligible.","PeriodicalId":237290,"journal":{"name":"2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A tactile-based fabric learning and classification architecture\",\"authors\":\"Abdul Attayyab Khan, M. Khosravi, S. Denei, P. Maiolino, Włodzimierz Kasprzak, F. Mastrogiovanni, G. Cannata\",\"doi\":\"10.1109/ICIAFS.2016.7946535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an architecture for tactile-based fabric learning and classification. The architecture is based on a number of SVM-based learning units, which we call fabric classification cores, specifically trained to discriminate between two fabrics. Each core is based on a specific subset of the fully available set of features, on the basis of their discriminative value, determined using the p-value. During fabric recognition, each core casts a vote. The architecture collects votes and provides an overall classification result. We tested seventeen different fabrics, and the result showed that classification errors are negligible.\",\"PeriodicalId\":237290,\"journal\":{\"name\":\"2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAFS.2016.7946535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAFS.2016.7946535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于触觉的织物学习和分类体系结构。该体系结构基于许多基于svm的学习单元,我们称之为织物分类核心,专门训练以区分两种织物。每个核心都基于完全可用的特征集的特定子集,基于它们的判别值,使用p值确定。在织物识别过程中,每个核心都会投一票。该体系结构收集投票并提供总体分类结果。我们测试了17种不同的织物,结果表明分类误差可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A tactile-based fabric learning and classification architecture
This paper proposes an architecture for tactile-based fabric learning and classification. The architecture is based on a number of SVM-based learning units, which we call fabric classification cores, specifically trained to discriminate between two fabrics. Each core is based on a specific subset of the fully available set of features, on the basis of their discriminative value, determined using the p-value. During fabric recognition, each core casts a vote. The architecture collects votes and provides an overall classification result. We tested seventeen different fabrics, and the result showed that classification errors are negligible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of solar PV connected Instant Power Supply integrated with a priority based load distribution system Comparison of single-line rate for dedicated protection on WDM optical network topologies Fuzzy logic controller design for an Unmanned Aerial Vehicle Voice operated home automation system based on Kinect sensor Comparison of serial and parallel snake robots for lateral undulation motion using Gazebo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1