Abdul Attayyab Khan, M. Khosravi, S. Denei, P. Maiolino, Włodzimierz Kasprzak, F. Mastrogiovanni, G. Cannata
{"title":"基于触觉的织物学习和分类体系结构","authors":"Abdul Attayyab Khan, M. Khosravi, S. Denei, P. Maiolino, Włodzimierz Kasprzak, F. Mastrogiovanni, G. Cannata","doi":"10.1109/ICIAFS.2016.7946535","DOIUrl":null,"url":null,"abstract":"This paper proposes an architecture for tactile-based fabric learning and classification. The architecture is based on a number of SVM-based learning units, which we call fabric classification cores, specifically trained to discriminate between two fabrics. Each core is based on a specific subset of the fully available set of features, on the basis of their discriminative value, determined using the p-value. During fabric recognition, each core casts a vote. The architecture collects votes and provides an overall classification result. We tested seventeen different fabrics, and the result showed that classification errors are negligible.","PeriodicalId":237290,"journal":{"name":"2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A tactile-based fabric learning and classification architecture\",\"authors\":\"Abdul Attayyab Khan, M. Khosravi, S. Denei, P. Maiolino, Włodzimierz Kasprzak, F. Mastrogiovanni, G. Cannata\",\"doi\":\"10.1109/ICIAFS.2016.7946535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an architecture for tactile-based fabric learning and classification. The architecture is based on a number of SVM-based learning units, which we call fabric classification cores, specifically trained to discriminate between two fabrics. Each core is based on a specific subset of the fully available set of features, on the basis of their discriminative value, determined using the p-value. During fabric recognition, each core casts a vote. The architecture collects votes and provides an overall classification result. We tested seventeen different fabrics, and the result showed that classification errors are negligible.\",\"PeriodicalId\":237290,\"journal\":{\"name\":\"2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAFS.2016.7946535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAFS.2016.7946535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A tactile-based fabric learning and classification architecture
This paper proposes an architecture for tactile-based fabric learning and classification. The architecture is based on a number of SVM-based learning units, which we call fabric classification cores, specifically trained to discriminate between two fabrics. Each core is based on a specific subset of the fully available set of features, on the basis of their discriminative value, determined using the p-value. During fabric recognition, each core casts a vote. The architecture collects votes and provides an overall classification result. We tested seventeen different fabrics, and the result showed that classification errors are negligible.