Q-ASSF:查询自适应语义流过滤

Jinho Shin, Sungkwang Eom, Kyong-Ho Lee
{"title":"Q-ASSF:查询自适应语义流过滤","authors":"Jinho Shin, Sungkwang Eom, Kyong-Ho Lee","doi":"10.1109/ICOSC.2015.7050786","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of processing semantic data streams. The semantic annotation of sensor data is one of the solutions to the heterogeneous nature of sensor data streams. Existing systems for publishing semantic streaming data collect stream data and transmit the semantic streaming data to query engines regardless of the queries registered in the query engines. As a large number of sensing devices become available, there is an increasing amount of the stream data, resulting in the performance degradation of a query engine. To remedy this problem, we propose a query-adaptive method of filtering semantic streams. The proposed method filters out sensors and semantic streaming data, which are not related with queries registered in a semantic stream query engine. The approach fairly reduces the data size necessary to answer semantic stream queries and consequently improves the performance of the query processing. To demonstrate the efficiency of our proposal, we present extensive experimental performance evaluations under a variety of sensor streams and query types. Experimental results show that the proposed method dramatically improves the performance of query processing compared to a non-filtering approach.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Q-ASSF: Query-adaptive semantic stream filtering\",\"authors\":\"Jinho Shin, Sungkwang Eom, Kyong-Ho Lee\",\"doi\":\"10.1109/ICOSC.2015.7050786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of processing semantic data streams. The semantic annotation of sensor data is one of the solutions to the heterogeneous nature of sensor data streams. Existing systems for publishing semantic streaming data collect stream data and transmit the semantic streaming data to query engines regardless of the queries registered in the query engines. As a large number of sensing devices become available, there is an increasing amount of the stream data, resulting in the performance degradation of a query engine. To remedy this problem, we propose a query-adaptive method of filtering semantic streams. The proposed method filters out sensors and semantic streaming data, which are not related with queries registered in a semantic stream query engine. The approach fairly reduces the data size necessary to answer semantic stream queries and consequently improves the performance of the query processing. To demonstrate the efficiency of our proposal, we present extensive experimental performance evaluations under a variety of sensor streams and query types. Experimental results show that the proposed method dramatically improves the performance of query processing compared to a non-filtering approach.\",\"PeriodicalId\":126701,\"journal\":{\"name\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2015.7050786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们解决了处理语义数据流的问题。传感器数据的语义标注是解决传感器数据流异构特性的一种方法。用于发布语义流数据的现有系统收集流数据并将语义流数据传输到查询引擎,而不管在查询引擎中注册的查询是什么。随着大量传感设备的出现,流数据量不断增加,导致查询引擎的性能下降。为了解决这个问题,我们提出了一种自适应查询的语义流过滤方法。该方法过滤掉与在语义流查询引擎中注册的查询无关的传感器和语义流数据。这种方法大大减少了回答语义流查询所需的数据大小,从而提高了查询处理的性能。为了证明我们建议的效率,我们在各种传感器流和查询类型下进行了广泛的实验性能评估。实验结果表明,与非过滤方法相比,该方法显著提高了查询处理的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Q-ASSF: Query-adaptive semantic stream filtering
In this paper, we address the problem of processing semantic data streams. The semantic annotation of sensor data is one of the solutions to the heterogeneous nature of sensor data streams. Existing systems for publishing semantic streaming data collect stream data and transmit the semantic streaming data to query engines regardless of the queries registered in the query engines. As a large number of sensing devices become available, there is an increasing amount of the stream data, resulting in the performance degradation of a query engine. To remedy this problem, we propose a query-adaptive method of filtering semantic streams. The proposed method filters out sensors and semantic streaming data, which are not related with queries registered in a semantic stream query engine. The approach fairly reduces the data size necessary to answer semantic stream queries and consequently improves the performance of the query processing. To demonstrate the efficiency of our proposal, we present extensive experimental performance evaluations under a variety of sensor streams and query types. Experimental results show that the proposed method dramatically improves the performance of query processing compared to a non-filtering approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NNB: An efficient nearest neighbor search method for hierarchical clustering on large datasets Aggregating financial services data without assumptions: A semantic data reference architecture Reducing search space for Web Service ranking using semantic logs and Semantic FP-Tree based association rule mining An approximation of betweenness centrality for Social Networks Performance analysis of Ensemble methods on Twitter sentiment analysis using NLP techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1