基于粒子群算法的随机优化问题

Fangguo He, Wenlue Chen
{"title":"基于粒子群算法的随机优化问题","authors":"Fangguo He, Wenlue Chen","doi":"10.1109/NSWCTC.2009.355","DOIUrl":null,"url":null,"abstract":"In this paper, two classes of stochastic optimization problems, which are expected value models and chance-constrained programming, are introduced. In order to solve the problems, the method of stochastic simulation is used to generate training samples for neural network, and then particle swarm optimization algorithm and neural network are integrated to produce a hybrid intelligent algorithm. Two numerical examples are provided to illustrate the effectiveness of the hybrid particle swarm optimization algorithm.","PeriodicalId":433291,"journal":{"name":"2009 International Conference on Networks Security, Wireless Communications and Trusted Computing","volume":"1801 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stochastic Optimization Problem through Particle Swarm Optimization Algorithm\",\"authors\":\"Fangguo He, Wenlue Chen\",\"doi\":\"10.1109/NSWCTC.2009.355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, two classes of stochastic optimization problems, which are expected value models and chance-constrained programming, are introduced. In order to solve the problems, the method of stochastic simulation is used to generate training samples for neural network, and then particle swarm optimization algorithm and neural network are integrated to produce a hybrid intelligent algorithm. Two numerical examples are provided to illustrate the effectiveness of the hybrid particle swarm optimization algorithm.\",\"PeriodicalId\":433291,\"journal\":{\"name\":\"2009 International Conference on Networks Security, Wireless Communications and Trusted Computing\",\"volume\":\"1801 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Networks Security, Wireless Communications and Trusted Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSWCTC.2009.355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Networks Security, Wireless Communications and Trusted Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSWCTC.2009.355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了期望值模型和机会约束规划这两类随机优化问题。为了解决这一问题,采用随机模拟的方法生成神经网络的训练样本,然后将粒子群优化算法与神经网络相结合,生成一种混合智能算法。给出了两个数值算例,说明了混合粒子群优化算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic Optimization Problem through Particle Swarm Optimization Algorithm
In this paper, two classes of stochastic optimization problems, which are expected value models and chance-constrained programming, are introduced. In order to solve the problems, the method of stochastic simulation is used to generate training samples for neural network, and then particle swarm optimization algorithm and neural network are integrated to produce a hybrid intelligent algorithm. Two numerical examples are provided to illustrate the effectiveness of the hybrid particle swarm optimization algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Protocol for Password-Based Key Exchange in Three-party Setting A Range Query Model Based on DHT in P2P System Energy Minimization for Broadcasting Message in Wireless Sensor Networks Energy-aware AODV Routing for Ad Hoc Networks Improved Block Soft Feedback Equalization Based on Sequence Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1