蒙特卡罗方法在非线性滤波和重要采样中的应用

F. Gland
{"title":"蒙特卡罗方法在非线性滤波和重要采样中的应用","authors":"F. Gland","doi":"10.1109/CDC.1984.272246","DOIUrl":null,"url":null,"abstract":"For the calculation of conditional expectations in nonlinear filtering of Markov processes, one may think to use Monte-Carlo techniques, as an alternative to the numerical solution of Zakai equation (a stochastic PDE). We show that a direct implementation of this idea is unefficient, and we propose a modified algorithm, that uses importance sampling, where our choice of the new probability is based on large deviations arguments.","PeriodicalId":269680,"journal":{"name":"The 23rd IEEE Conference on Decision and Control","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Monte-Carlo methods in nonlinear filtering and importance sampling\",\"authors\":\"F. Gland\",\"doi\":\"10.1109/CDC.1984.272246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the calculation of conditional expectations in nonlinear filtering of Markov processes, one may think to use Monte-Carlo techniques, as an alternative to the numerical solution of Zakai equation (a stochastic PDE). We show that a direct implementation of this idea is unefficient, and we propose a modified algorithm, that uses importance sampling, where our choice of the new probability is based on large deviations arguments.\",\"PeriodicalId\":269680,\"journal\":{\"name\":\"The 23rd IEEE Conference on Decision and Control\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 23rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1984.272246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1984.272246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对于马尔可夫过程非线性滤波中条件期望的计算,可以考虑使用蒙特卡罗技术,作为Zakai方程(随机PDE)数值解的替代方法。我们表明,直接实现这一想法是低效的,我们提出了一种改进的算法,该算法使用重要抽样,其中我们对新概率的选择是基于大偏差参数的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monte-Carlo methods in nonlinear filtering and importance sampling
For the calculation of conditional expectations in nonlinear filtering of Markov processes, one may think to use Monte-Carlo techniques, as an alternative to the numerical solution of Zakai equation (a stochastic PDE). We show that a direct implementation of this idea is unefficient, and we propose a modified algorithm, that uses importance sampling, where our choice of the new probability is based on large deviations arguments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive implementation of the internal model principle Fuzzy parking control of model car Stochastic control of a partially observed linear stochastic system with an exponential-of-integral performance index Structures for nonlinear systems Reducing cluster size for computing remedial adjustments for voltage and loading violations on the power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1