{"title":"蒙特卡罗方法在非线性滤波和重要采样中的应用","authors":"F. Gland","doi":"10.1109/CDC.1984.272246","DOIUrl":null,"url":null,"abstract":"For the calculation of conditional expectations in nonlinear filtering of Markov processes, one may think to use Monte-Carlo techniques, as an alternative to the numerical solution of Zakai equation (a stochastic PDE). We show that a direct implementation of this idea is unefficient, and we propose a modified algorithm, that uses importance sampling, where our choice of the new probability is based on large deviations arguments.","PeriodicalId":269680,"journal":{"name":"The 23rd IEEE Conference on Decision and Control","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Monte-Carlo methods in nonlinear filtering and importance sampling\",\"authors\":\"F. Gland\",\"doi\":\"10.1109/CDC.1984.272246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the calculation of conditional expectations in nonlinear filtering of Markov processes, one may think to use Monte-Carlo techniques, as an alternative to the numerical solution of Zakai equation (a stochastic PDE). We show that a direct implementation of this idea is unefficient, and we propose a modified algorithm, that uses importance sampling, where our choice of the new probability is based on large deviations arguments.\",\"PeriodicalId\":269680,\"journal\":{\"name\":\"The 23rd IEEE Conference on Decision and Control\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 23rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1984.272246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1984.272246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monte-Carlo methods in nonlinear filtering and importance sampling
For the calculation of conditional expectations in nonlinear filtering of Markov processes, one may think to use Monte-Carlo techniques, as an alternative to the numerical solution of Zakai equation (a stochastic PDE). We show that a direct implementation of this idea is unefficient, and we propose a modified algorithm, that uses importance sampling, where our choice of the new probability is based on large deviations arguments.