视网膜增强的用于视频分类的词描述符包

Sabin Tiberius Strat, A. Benoît, P. Lambert
{"title":"视网膜增强的用于视频分类的词描述符包","authors":"Sabin Tiberius Strat, A. Benoît, P. Lambert","doi":"10.5281/ZENODO.44198","DOIUrl":null,"url":null,"abstract":"This paper addresses the task of detecting diverse semantic concepts in videos. Within this context, the Bag Of Visual Words (BoW) model, inherited from sampled video keyframes analysis, is among the most popular methods. However, in the case of image sequences, this model faces new difficulties such as the added motion information, the extra computational cost and the increased variability of content and concepts to handle. Considering this spatio-temporal context, we propose to extend the BoW model by introducing video preprocessing strategies with the help of a retina model, before extracting BoW descriptors. This preprocessing increases the robustness of local features to disturbances such as noise and lighting variations. Additionally, the retina model is used to detect potentially salient areas and to construct spatio-temporal descriptors. We experiment with three state of the art local features, SIFT, SURF and FREAK, and we evaluate our results on the TRECVid 2012 Semantic Indexing (SIN) challenge.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Retina enhanced bag of words descriptors for video classification\",\"authors\":\"Sabin Tiberius Strat, A. Benoît, P. Lambert\",\"doi\":\"10.5281/ZENODO.44198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the task of detecting diverse semantic concepts in videos. Within this context, the Bag Of Visual Words (BoW) model, inherited from sampled video keyframes analysis, is among the most popular methods. However, in the case of image sequences, this model faces new difficulties such as the added motion information, the extra computational cost and the increased variability of content and concepts to handle. Considering this spatio-temporal context, we propose to extend the BoW model by introducing video preprocessing strategies with the help of a retina model, before extracting BoW descriptors. This preprocessing increases the robustness of local features to disturbances such as noise and lighting variations. Additionally, the retina model is used to detect potentially salient areas and to construct spatio-temporal descriptors. We experiment with three state of the art local features, SIFT, SURF and FREAK, and we evaluate our results on the TRECVid 2012 Semantic Indexing (SIN) challenge.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.44198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了视频中不同语义概念的检测问题。在这种情况下,从采样视频关键帧分析中继承而来的视觉词袋(BoW)模型是最流行的方法之一。然而,在图像序列的情况下,该模型面临着新的困难,例如增加的运动信息,额外的计算成本以及内容和概念的可变性增加。考虑到这种时空背景,我们建议在提取BoW描述符之前,通过引入视网膜模型的视频预处理策略来扩展BoW模型。这种预处理增加了局部特征对噪声和光照变化等干扰的鲁棒性。此外,视网膜模型用于检测潜在的显著区域并构建时空描述符。我们实验了三种最先进的局部特征,SIFT, SURF和FREAK,并在TRECVid 2012语义索引(SIN)挑战中评估了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retina enhanced bag of words descriptors for video classification
This paper addresses the task of detecting diverse semantic concepts in videos. Within this context, the Bag Of Visual Words (BoW) model, inherited from sampled video keyframes analysis, is among the most popular methods. However, in the case of image sequences, this model faces new difficulties such as the added motion information, the extra computational cost and the increased variability of content and concepts to handle. Considering this spatio-temporal context, we propose to extend the BoW model by introducing video preprocessing strategies with the help of a retina model, before extracting BoW descriptors. This preprocessing increases the robustness of local features to disturbances such as noise and lighting variations. Additionally, the retina model is used to detect potentially salient areas and to construct spatio-temporal descriptors. We experiment with three state of the art local features, SIFT, SURF and FREAK, and we evaluate our results on the TRECVid 2012 Semantic Indexing (SIN) challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved chirp group delay based algorithm for estimating the vocal tract response Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion Adaptive waveform selection and target tracking by wideband multistatic radar/sonar systems Exploiting time and frequency information for Delay/Doppler altimetry Merging extremum seeking and self-optimizing narrowband interference canceller - overdetermined case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1