基于自适应卡尔曼背景的动态背景下运动车辆分割方法

K. Ahmad, Z. Saad, N. Abdullah, Z. Hussain, M. H. Mohd Noor
{"title":"基于自适应卡尔曼背景的动态背景下运动车辆分割方法","authors":"K. Ahmad, Z. Saad, N. Abdullah, Z. Hussain, M. H. Mohd Noor","doi":"10.1109/CSPA.2011.5759918","DOIUrl":null,"url":null,"abstract":"This paper introduce the adaptive kalman filter to modeling dynamic background for background subtraction. Background subtraction is a method to identify object and famous used in moving object segmentation. In this paper we also investigate a comparison study on Gaussian subtraction method, frame differencing method and approximate median method. The detection of object will be shown in the result.","PeriodicalId":282179,"journal":{"name":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Moving vehicle segmentation in a dynamic background using self-adaptive kalman background method\",\"authors\":\"K. Ahmad, Z. Saad, N. Abdullah, Z. Hussain, M. H. Mohd Noor\",\"doi\":\"10.1109/CSPA.2011.5759918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduce the adaptive kalman filter to modeling dynamic background for background subtraction. Background subtraction is a method to identify object and famous used in moving object segmentation. In this paper we also investigate a comparison study on Gaussian subtraction method, frame differencing method and approximate median method. The detection of object will be shown in the result.\",\"PeriodicalId\":282179,\"journal\":{\"name\":\"2011 IEEE 7th International Colloquium on Signal Processing and its Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 7th International Colloquium on Signal Processing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2011.5759918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2011.5759918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文引入自适应卡尔曼滤波对动态背景进行建模,进行背景相减。背景减法是一种识别目标的方法,在运动目标分割中非常常用。本文还对高斯减法、帧差法和近似中值法进行了比较研究。检测到的对象将显示在结果中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moving vehicle segmentation in a dynamic background using self-adaptive kalman background method
This paper introduce the adaptive kalman filter to modeling dynamic background for background subtraction. Background subtraction is a method to identify object and famous used in moving object segmentation. In this paper we also investigate a comparison study on Gaussian subtraction method, frame differencing method and approximate median method. The detection of object will be shown in the result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nucleus segmentation technique for acute Leukemia An improvement of MIPS rate in detection of DTMF signals of 64 subscribers using GOERTZEL's algorithm Simple GUI design for monitoring of a remotely operated quadrotor unmanned aerial vehicle (UAV) Potential of single orthorectified of high resolution satellite image (Ikonos) for large scale mapping The classification of material mechanical properties using non-destructive vibration technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1