用设备上增量学习和时间卷积网络解决基于表面肌电信号的手势识别中的时变问题

A. Burrello, Marcello Zanghieri, Cristian Sarti, Leonardo Ravaglia, Simone Benatt, L. Benini
{"title":"用设备上增量学习和时间卷积网络解决基于表面肌电信号的手势识别中的时变问题","authors":"A. Burrello, Marcello Zanghieri, Cristian Sarti, Leonardo Ravaglia, Simone Benatt, L. Benini","doi":"10.1109/SAS51076.2021.9530007","DOIUrl":null,"url":null,"abstract":"Human-machine interaction is showing promising results for robotic prosthesis control and rehabilitation. In these fields, hand movement recognition via surface electromyographic (sEMG) signals is one of the most promising approaches. However, it still suffers from the issue of sEMG signal's variability over time, which negatively impacts classification robustness. In particular, the non-stationarity of input signals and the surface electrodes' shift can cause up to 30 % degradation in gesture recognition accuracy. This work addresses the temporal variability of the sEMG-based gesture recognition by proposing to train a Temporal Convolutional Network (TCN) incrementally over multiple gesture training sessions. Using incremental learning, we re-train our model on stored latent data spanning multiple sessions. We validate our approach on the UniBo-20-Session dataset, which includes 8 hand gestures from 3 subjects. Our incremental learning framework obtains 18.9% higher accuracy compared to a baseline with a standard single training session. Deploying our TCN on a Parallel, Ultra-Low Power (PULP) microcontroller unit (MCU), GAP8, we achieve an inference latency and energy of 12.9 ms and 0.66 mJ, respectively, with a weight memory footprint of 427 kB and a data memory footprint of 0.5-32 MB.","PeriodicalId":224327,"journal":{"name":"2021 IEEE Sensors Applications Symposium (SAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tackling Time-Variability in sEMG-based Gesture Recognition with On-Device Incremental Learning and Temporal Convolutional Networks\",\"authors\":\"A. Burrello, Marcello Zanghieri, Cristian Sarti, Leonardo Ravaglia, Simone Benatt, L. Benini\",\"doi\":\"10.1109/SAS51076.2021.9530007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-machine interaction is showing promising results for robotic prosthesis control and rehabilitation. In these fields, hand movement recognition via surface electromyographic (sEMG) signals is one of the most promising approaches. However, it still suffers from the issue of sEMG signal's variability over time, which negatively impacts classification robustness. In particular, the non-stationarity of input signals and the surface electrodes' shift can cause up to 30 % degradation in gesture recognition accuracy. This work addresses the temporal variability of the sEMG-based gesture recognition by proposing to train a Temporal Convolutional Network (TCN) incrementally over multiple gesture training sessions. Using incremental learning, we re-train our model on stored latent data spanning multiple sessions. We validate our approach on the UniBo-20-Session dataset, which includes 8 hand gestures from 3 subjects. Our incremental learning framework obtains 18.9% higher accuracy compared to a baseline with a standard single training session. Deploying our TCN on a Parallel, Ultra-Low Power (PULP) microcontroller unit (MCU), GAP8, we achieve an inference latency and energy of 12.9 ms and 0.66 mJ, respectively, with a weight memory footprint of 427 kB and a data memory footprint of 0.5-32 MB.\",\"PeriodicalId\":224327,\"journal\":{\"name\":\"2021 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS51076.2021.9530007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS51076.2021.9530007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

人机交互在机器人假肢控制和康复方面显示出良好的结果。在这些领域中,通过表面肌电图(sEMG)信号进行手部运动识别是最有前途的方法之一。然而,它仍然存在肌电信号随时间变化的问题,这对分类鲁棒性产生了负面影响。特别是,输入信号的非平稳性和表面电极的移位会导致手势识别精度下降30%。这项工作通过提出在多个手势训练会话中增量训练一个时间卷积网络(TCN)来解决基于表面肌电信号的手势识别的时间变异性。使用增量学习,我们在存储的潜在数据上跨多个会话重新训练我们的模型。我们在UniBo-20-Session数据集上验证了我们的方法,该数据集包括来自3个受试者的8个手势。我们的增量学习框架与标准单次训练的基线相比,准确率提高了18.9%。将我们的TCN部署在并行超低功耗(PULP)微控制器(MCU) GAP8上,我们分别实现了12.9 ms和0.66 mJ的推理延迟和能量,权重内存占用为427 kB,数据内存占用为0.5-32 MB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tackling Time-Variability in sEMG-based Gesture Recognition with On-Device Incremental Learning and Temporal Convolutional Networks
Human-machine interaction is showing promising results for robotic prosthesis control and rehabilitation. In these fields, hand movement recognition via surface electromyographic (sEMG) signals is one of the most promising approaches. However, it still suffers from the issue of sEMG signal's variability over time, which negatively impacts classification robustness. In particular, the non-stationarity of input signals and the surface electrodes' shift can cause up to 30 % degradation in gesture recognition accuracy. This work addresses the temporal variability of the sEMG-based gesture recognition by proposing to train a Temporal Convolutional Network (TCN) incrementally over multiple gesture training sessions. Using incremental learning, we re-train our model on stored latent data spanning multiple sessions. We validate our approach on the UniBo-20-Session dataset, which includes 8 hand gestures from 3 subjects. Our incremental learning framework obtains 18.9% higher accuracy compared to a baseline with a standard single training session. Deploying our TCN on a Parallel, Ultra-Low Power (PULP) microcontroller unit (MCU), GAP8, we achieve an inference latency and energy of 12.9 ms and 0.66 mJ, respectively, with a weight memory footprint of 427 kB and a data memory footprint of 0.5-32 MB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quasi-Static Magnetic Localization of Capsule Endoscopes with an Active Integrated Coil Comparing BLE and NB-IoT as Communication Options for Smart Viticulture IoT Applications Self-Compensation of Cross Influences using Spectral Transmission Ratios for Optical Fiber Sensors in Lithium-Ion Batteries Polycrystalline silicon photovoltaic harvesting for indoor IoT systems under red- far red artificial light SCPI: IoT and the Déjà Vu of Instrument Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1