基于张量补全的半被动RIS辅助系统信道估计

Mengyi Qi, Qi Liu, Xuan Wei, Pengpeng Lv
{"title":"基于张量补全的半被动RIS辅助系统信道估计","authors":"Mengyi Qi, Qi Liu, Xuan Wei, Pengpeng Lv","doi":"10.1109/ICCT56141.2022.10073106","DOIUrl":null,"url":null,"abstract":"Previous works mainly considered semi-passive Re-configurable intelligent surface (RIS) design with special layout arrangements, ignoring the fact that the local observed values may not reflect the overall channel when RIS elements increase. In this paper, we design a semi-passive RIS structure with a random arrangement, and propose a tensor completion-based channel estimation algorithm to recover the whole channel from the partially observed signals. Specifically, we introduce the tensor singular value decomposition (t-svd) framework to learn the inherent low-rank representation of the observed data: the search for inherent basis representations is carried out on the t-Grassmannian manifold, and the representation of low-rank tensor under this basis has a closed-form solution. As long as the proportion of active components reaches a certain level, the proposed algorithm can work well. Simulations show that the t-svd-based tensor completion algorithm performs better than the CP decomposition-based tensor completion algorithm.","PeriodicalId":294057,"journal":{"name":"2022 IEEE 22nd International Conference on Communication Technology (ICCT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor Completion-Based Channel Estimation for Semi-passive RIS Assisted System\",\"authors\":\"Mengyi Qi, Qi Liu, Xuan Wei, Pengpeng Lv\",\"doi\":\"10.1109/ICCT56141.2022.10073106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous works mainly considered semi-passive Re-configurable intelligent surface (RIS) design with special layout arrangements, ignoring the fact that the local observed values may not reflect the overall channel when RIS elements increase. In this paper, we design a semi-passive RIS structure with a random arrangement, and propose a tensor completion-based channel estimation algorithm to recover the whole channel from the partially observed signals. Specifically, we introduce the tensor singular value decomposition (t-svd) framework to learn the inherent low-rank representation of the observed data: the search for inherent basis representations is carried out on the t-Grassmannian manifold, and the representation of low-rank tensor under this basis has a closed-form solution. As long as the proportion of active components reaches a certain level, the proposed algorithm can work well. Simulations show that the t-svd-based tensor completion algorithm performs better than the CP decomposition-based tensor completion algorithm.\",\"PeriodicalId\":294057,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Communication Technology (ICCT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Communication Technology (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT56141.2022.10073106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT56141.2022.10073106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以往的研究主要考虑具有特殊布局安排的半被动可重构智能曲面(RIS)设计,忽略了RIS元素增加时局部观测值可能无法反映整体通道的事实。本文设计了一种随机排列的半被动RIS结构,并提出了一种基于张量补全的信道估计算法,从部分观测信号中恢复整个信道。具体来说,我们引入了张量奇异值分解(t-svd)框架来学习观测数据的固有低秩表示:在t-Grassmannian流形上搜索固有基表示,在该基下的低秩张量表示具有闭解。只要有效成分的比例达到一定水平,所提出的算法就能很好地工作。仿真结果表明,基于t-svd的张量补全算法优于基于CP分解的张量补全算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tensor Completion-Based Channel Estimation for Semi-passive RIS Assisted System
Previous works mainly considered semi-passive Re-configurable intelligent surface (RIS) design with special layout arrangements, ignoring the fact that the local observed values may not reflect the overall channel when RIS elements increase. In this paper, we design a semi-passive RIS structure with a random arrangement, and propose a tensor completion-based channel estimation algorithm to recover the whole channel from the partially observed signals. Specifically, we introduce the tensor singular value decomposition (t-svd) framework to learn the inherent low-rank representation of the observed data: the search for inherent basis representations is carried out on the t-Grassmannian manifold, and the representation of low-rank tensor under this basis has a closed-form solution. As long as the proportion of active components reaches a certain level, the proposed algorithm can work well. Simulations show that the t-svd-based tensor completion algorithm performs better than the CP decomposition-based tensor completion algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anomaly Detection Method For Interactive Data of Third-Party Load Aggregation Platform Based on Multidimensional Feature Information Fusion Stable and Robust Improvement of AMP for Supporting Massive Connectivity Power Allocation and Beamforming Vectors Optimization in STAR-RIS Assisted SWIPT Joint Identification of Modulation and Channel Coding Based on Deep Learning Geometric Feature Detection of Space Targets Based on Color Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1