基于C统计量的超高维纵向数据特征筛选

Peng Lai, Qing Di, Zhezi Shen, Yanqiu Zhou
{"title":"基于C统计量的超高维纵向数据特征筛选","authors":"Peng Lai, Qing Di, Zhezi Shen, Yanqiu Zhou","doi":"10.1002/sam.11597","DOIUrl":null,"url":null,"abstract":"This paper considers the feature screening method for the ultrahigh dimensional semiparametric linear models with longitudinal data. The C‐statistic which measures the rank concordance between predictors and outcomes is generalized to the longitudinal data. On the basis of C‐statistic and the score equation theory, we propose a feature screening method named LCSIS. Based on the smoothed technique and the score equations, the proposed estimating screening procedure is easy to compute and satisfies the feature screening consistency. Furthermore, Monte Carlo simulation studies and a real data application are conducted to examine the finite sample performance of the proposed procedure.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature screening of ultrahigh dimensional longitudinal data based on the C‐statistic\",\"authors\":\"Peng Lai, Qing Di, Zhezi Shen, Yanqiu Zhou\",\"doi\":\"10.1002/sam.11597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the feature screening method for the ultrahigh dimensional semiparametric linear models with longitudinal data. The C‐statistic which measures the rank concordance between predictors and outcomes is generalized to the longitudinal data. On the basis of C‐statistic and the score equation theory, we propose a feature screening method named LCSIS. Based on the smoothed technique and the score equations, the proposed estimating screening procedure is easy to compute and satisfies the feature screening consistency. Furthermore, Monte Carlo simulation studies and a real data application are conducted to examine the finite sample performance of the proposed procedure.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有纵向数据的超高维半参数线性模型的特征筛选方法。衡量预测因子和结果之间的等级一致性的C统计量被推广到纵向数据。在C统计量和分数方程理论的基础上,提出了一种特征筛选方法LCSIS。基于平滑技术和分数方程的估计筛选过程易于计算,且满足特征筛选的一致性。此外,还进行了蒙特卡罗模拟研究和实际数据应用,以检验所提出的程序的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature screening of ultrahigh dimensional longitudinal data based on the C‐statistic
This paper considers the feature screening method for the ultrahigh dimensional semiparametric linear models with longitudinal data. The C‐statistic which measures the rank concordance between predictors and outcomes is generalized to the longitudinal data. On the basis of C‐statistic and the score equation theory, we propose a feature screening method named LCSIS. Based on the smoothed technique and the score equations, the proposed estimating screening procedure is easy to compute and satisfies the feature screening consistency. Furthermore, Monte Carlo simulation studies and a real data application are conducted to examine the finite sample performance of the proposed procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural interval‐censored survival regression with feature selection Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics Confidence bounds for threshold similarity graph in random variable network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1