基于高电阻率硅薄膜MCM-D技术的超小型化集成腔

G. Posada, G. Carchon, B. Nauwelaers, W. De Raedt
{"title":"基于高电阻率硅薄膜MCM-D技术的超小型化集成腔","authors":"G. Posada, G. Carchon, B. Nauwelaers, W. De Raedt","doi":"10.1109/SMIC.2008.41","DOIUrl":null,"url":null,"abstract":"Millimeter-wave commercial communication systems are getting a lot of attention in the recent years, and therefore there is a need of implementing miniaturized high-quality passive components at these frequencies. In this paper, we demonstrate the integration of ultra-miniaturized cavities on the thin-film multi-chip module technology (MCM-D) by using through-substrate vias on 100 mum thick high-resistivity silicon (HRSi) wafers. Having HRSi as filling material, the proposed cavities are 3.4 times smaller than air filled cavities. Being integrated cavities, no assembly step is needed, which is an advantage as compared to air filled cavities where wafer stacking is required. The influence of leakage through the via fences is studied in detail showing that having a via diameter of 100 mum, and a pitch of 220 mum, one via row is enough to eliminate radiation at 29 GHz, but at 60 GHz 2 via rows are necessary. Additionally, this study shows that the probe feeding mechanism used in this work is very effective and does not lead to any leakage. Second-order filters using integrated cavities are demonstrated at 29 GHz and 60 GHz yielding low losses and a highly accurate center frequency prediction the first time that the filters were manufactured. Being able to implement small and high-quality components, the proposed technology is a viable platform for the implementation of commercial millimeter-wave components.","PeriodicalId":350325,"journal":{"name":"2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Ultra-Miniaturized Integrated Cavities on High-Resistivity Silicon Thin-Film MCM-D Technology\",\"authors\":\"G. Posada, G. Carchon, B. Nauwelaers, W. De Raedt\",\"doi\":\"10.1109/SMIC.2008.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter-wave commercial communication systems are getting a lot of attention in the recent years, and therefore there is a need of implementing miniaturized high-quality passive components at these frequencies. In this paper, we demonstrate the integration of ultra-miniaturized cavities on the thin-film multi-chip module technology (MCM-D) by using through-substrate vias on 100 mum thick high-resistivity silicon (HRSi) wafers. Having HRSi as filling material, the proposed cavities are 3.4 times smaller than air filled cavities. Being integrated cavities, no assembly step is needed, which is an advantage as compared to air filled cavities where wafer stacking is required. The influence of leakage through the via fences is studied in detail showing that having a via diameter of 100 mum, and a pitch of 220 mum, one via row is enough to eliminate radiation at 29 GHz, but at 60 GHz 2 via rows are necessary. Additionally, this study shows that the probe feeding mechanism used in this work is very effective and does not lead to any leakage. Second-order filters using integrated cavities are demonstrated at 29 GHz and 60 GHz yielding low losses and a highly accurate center frequency prediction the first time that the filters were manufactured. Being able to implement small and high-quality components, the proposed technology is a viable platform for the implementation of commercial millimeter-wave components.\",\"PeriodicalId\":350325,\"journal\":{\"name\":\"2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMIC.2008.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMIC.2008.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

近年来,毫米波商用通信系统得到了广泛的关注,因此需要在这些频率上实现小型化的高质量无源元件。在本文中,我们展示了超小型空腔集成在薄膜多芯片模块技术(MCM-D)上,通过在100 μ m厚的高电阻硅(HRSi)晶圆上使用透基板通孔。采用HRSi作为填充材料,所提出的空腔比空气填充空腔小3.4倍。作为集成腔,不需要组装步骤,与需要晶圆堆叠的空气填充腔相比,这是一个优势。详细研究了漏电对过孔栅的影响,结果表明,在29 GHz时,通孔直径为100 μ m,节距为220 μ m,一排通孔足以消除辐射,但在60 GHz时,则需要两排通孔。此外,本研究表明,在这项工作中使用的探针馈送机构是非常有效的,不会导致任何泄漏。采用集成腔的二阶滤波器在29 GHz和60 GHz频段进行了演示,首次制造的滤波器具有低损耗和高精度的中心频率预测。由于能够实现小而高质量的组件,所提出的技术是实现商用毫米波组件的可行平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-Miniaturized Integrated Cavities on High-Resistivity Silicon Thin-Film MCM-D Technology
Millimeter-wave commercial communication systems are getting a lot of attention in the recent years, and therefore there is a need of implementing miniaturized high-quality passive components at these frequencies. In this paper, we demonstrate the integration of ultra-miniaturized cavities on the thin-film multi-chip module technology (MCM-D) by using through-substrate vias on 100 mum thick high-resistivity silicon (HRSi) wafers. Having HRSi as filling material, the proposed cavities are 3.4 times smaller than air filled cavities. Being integrated cavities, no assembly step is needed, which is an advantage as compared to air filled cavities where wafer stacking is required. The influence of leakage through the via fences is studied in detail showing that having a via diameter of 100 mum, and a pitch of 220 mum, one via row is enough to eliminate radiation at 29 GHz, but at 60 GHz 2 via rows are necessary. Additionally, this study shows that the probe feeding mechanism used in this work is very effective and does not lead to any leakage. Second-order filters using integrated cavities are demonstrated at 29 GHz and 60 GHz yielding low losses and a highly accurate center frequency prediction the first time that the filters were manufactured. Being able to implement small and high-quality components, the proposed technology is a viable platform for the implementation of commercial millimeter-wave components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thick-Gate-Oxide MOS Structures with Sub-Design-Rule (SDR) Polysilicon Lengths for RF Circuit Applications SiC Varactor Based Tunable Filters with Enhanced Linearity Current Status and Future Trends for Si and Compound MMICs in Millimeter-Wave Regime and Related Issues for System on Chip (SOC) and/or System in Package (SIP) Applications Probing Hot Carrier Phenomena in npn and pnp SiGe HBTs Characterization and Modeling of Microstrip Transmission Lines with Slow-Wave Effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1