群聊虚拟角色的非语言行为生成

Ferdinand de Coninck, Zerrin Yumak, G. Sandino, R. Veltkamp
{"title":"群聊虚拟角色的非语言行为生成","authors":"Ferdinand de Coninck, Zerrin Yumak, G. Sandino, R. Veltkamp","doi":"10.1109/AIVR46125.2019.00016","DOIUrl":null,"url":null,"abstract":"We present an approach to synthesize non-verbal behaviors for virtual characters during group conversations. We employ a probabilistic model and use Dynamic Bayesian Networks to find the correlations between the conversational state and non-verbal behaviors. The parameters of the network are learned by annotating and analyzing the CMU Panoptic dataset. The results are evaluated in comparison to the ground truth data and with user experiments. The behaviors can be generated online and have been integrated with the animation engine of a game company specialized in Virtual Reality applications for Cognitive Behavioral Therapy. To our knowledge, this is the first study that takes into account a data-driven approach to automatically generate non-verbal behaviors during group interactions.","PeriodicalId":274566,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Non-Verbal Behavior Generation for Virtual Characters in Group Conversations\",\"authors\":\"Ferdinand de Coninck, Zerrin Yumak, G. Sandino, R. Veltkamp\",\"doi\":\"10.1109/AIVR46125.2019.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach to synthesize non-verbal behaviors for virtual characters during group conversations. We employ a probabilistic model and use Dynamic Bayesian Networks to find the correlations between the conversational state and non-verbal behaviors. The parameters of the network are learned by annotating and analyzing the CMU Panoptic dataset. The results are evaluated in comparison to the ground truth data and with user experiments. The behaviors can be generated online and have been integrated with the animation engine of a game company specialized in Virtual Reality applications for Cognitive Behavioral Therapy. To our knowledge, this is the first study that takes into account a data-driven approach to automatically generate non-verbal behaviors during group interactions.\",\"PeriodicalId\":274566,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIVR46125.2019.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR46125.2019.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了一种合成虚拟人物在群体对话中的非语言行为的方法。我们采用概率模型和动态贝叶斯网络来寻找会话状态和非语言行为之间的相关性。通过对CMU Panoptic数据集的标注和分析,学习网络的参数。将结果与地面真实数据和用户实验进行比较评估。这些行为可以在线生成,并已与一家专门从事虚拟现实应用于认知行为治疗的游戏公司的动画引擎集成。据我们所知,这是第一个考虑到数据驱动方法在群体互动中自动产生非语言行为的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Verbal Behavior Generation for Virtual Characters in Group Conversations
We present an approach to synthesize non-verbal behaviors for virtual characters during group conversations. We employ a probabilistic model and use Dynamic Bayesian Networks to find the correlations between the conversational state and non-verbal behaviors. The parameters of the network are learned by annotating and analyzing the CMU Panoptic dataset. The results are evaluated in comparison to the ground truth data and with user experiments. The behaviors can be generated online and have been integrated with the animation engine of a game company specialized in Virtual Reality applications for Cognitive Behavioral Therapy. To our knowledge, this is the first study that takes into account a data-driven approach to automatically generate non-verbal behaviors during group interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Motion Speed on the Perception of Latency in Avatar Control Situation-Adaptive Object Grasping Recognition in VR Environment CrowdAR Table - An AR Table for Interactive Crowd Simulation Augmented Reality for Human-Robot Cooperation in Aircraft Assembly Measuring User Responses to Driving Simulators: A Galvanic Skin Response Based Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1