{"title":"我应该使用什么测试oracle来进行有效的GUI测试?","authors":"A. Memon, Ishan Banerjee, Adithya Nagarajan","doi":"10.1109/ASE.2003.1240304","DOIUrl":null,"url":null,"abstract":"Test designers widely believe that the overall effectiveness and cost of software testing depends largely on the type and number of test cases executed on the software. In this paper we show that the test oracle used during testing also contributes significantly to test effectiveness and cost. A test oracle is a mechanism that determines whether software executed correctly for a test case. We define a test oracle to contain two essential parts: oracle information that represents expected output; and an oracle procedure that compares the oracle information with the actual output. By varying the level of detail of oracle information and changing the oracle procedure, a test designer can create different types of test oracles. We design 11 types of test oracles and empirically compare them on four software systems. We seed faults in software to create 100 faulty versions, execute 600 test cases on each version, for all 11 types of oracles. In all, we report results of 660,000 test runs on software. We show (1) the time and space requirements of the oracles, (2) that faults are detected early in the testing process when using detailed oracle information and complex oracle procedures, although at a higher cost per test case, and (3) that employing expensive oracles results in detecting a large number of faults using relatively smaller number of test cases.","PeriodicalId":114604,"journal":{"name":"18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":"{\"title\":\"What test oracle should I use for effective GUI testing?\",\"authors\":\"A. Memon, Ishan Banerjee, Adithya Nagarajan\",\"doi\":\"10.1109/ASE.2003.1240304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Test designers widely believe that the overall effectiveness and cost of software testing depends largely on the type and number of test cases executed on the software. In this paper we show that the test oracle used during testing also contributes significantly to test effectiveness and cost. A test oracle is a mechanism that determines whether software executed correctly for a test case. We define a test oracle to contain two essential parts: oracle information that represents expected output; and an oracle procedure that compares the oracle information with the actual output. By varying the level of detail of oracle information and changing the oracle procedure, a test designer can create different types of test oracles. We design 11 types of test oracles and empirically compare them on four software systems. We seed faults in software to create 100 faulty versions, execute 600 test cases on each version, for all 11 types of oracles. In all, we report results of 660,000 test runs on software. We show (1) the time and space requirements of the oracles, (2) that faults are detected early in the testing process when using detailed oracle information and complex oracle procedures, although at a higher cost per test case, and (3) that employing expensive oracles results in detecting a large number of faults using relatively smaller number of test cases.\",\"PeriodicalId\":114604,\"journal\":{\"name\":\"18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"138\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2003.1240304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2003.1240304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
What test oracle should I use for effective GUI testing?
Test designers widely believe that the overall effectiveness and cost of software testing depends largely on the type and number of test cases executed on the software. In this paper we show that the test oracle used during testing also contributes significantly to test effectiveness and cost. A test oracle is a mechanism that determines whether software executed correctly for a test case. We define a test oracle to contain two essential parts: oracle information that represents expected output; and an oracle procedure that compares the oracle information with the actual output. By varying the level of detail of oracle information and changing the oracle procedure, a test designer can create different types of test oracles. We design 11 types of test oracles and empirically compare them on four software systems. We seed faults in software to create 100 faulty versions, execute 600 test cases on each version, for all 11 types of oracles. In all, we report results of 660,000 test runs on software. We show (1) the time and space requirements of the oracles, (2) that faults are detected early in the testing process when using detailed oracle information and complex oracle procedures, although at a higher cost per test case, and (3) that employing expensive oracles results in detecting a large number of faults using relatively smaller number of test cases.