摘要:CPAL语言在网络物理系统建模、仿真和编程中的应用

Loïc Fejoz, N. Navet, S. M. Sundharam, S. Altmeyer
{"title":"摘要:CPAL语言在网络物理系统建模、仿真和编程中的应用","authors":"Loïc Fejoz, N. Navet, S. M. Sundharam, S. Altmeyer","doi":"10.1109/RTAS.2016.7461329","DOIUrl":null,"url":null,"abstract":"CPAL is a new language to model, simulate, verify and program Cyber-Physical Systems (CPS). CPAL serves to describe both the functional behaviour of activities (i.e., the code of the function itself) as well as the functional architecture of the system (i.e., the set of functions, how they are activated, and the data flows among the functions). CPAL is meant to support two use-cases. Firstly, CPAL is a development and design-space exploration environment for CPS with main features being the formal description, the editing, graphical representation and simulation of CPS models. Secondly, CPAL is a real-time execution platform. The vision behind CPAL is that a model is executed and verified in simulation mode on a workstation and the same model can be later run on an embedded board with a timing-equivalent run-time behaviour. The design and development of CPAL have been organized around a set of realistic case-studies that will be demonstrated during the demonstration session. The CPAL case studies and experiments are inspired from the research and teaching carried out at University of Luxembourg, and RTAW's projects with partner and customer companies.","PeriodicalId":338179,"journal":{"name":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Demo Abstract: Applications of the CPAL Language to Model, Simulate and Program Cyber-Physical Systems\",\"authors\":\"Loïc Fejoz, N. Navet, S. M. Sundharam, S. Altmeyer\",\"doi\":\"10.1109/RTAS.2016.7461329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CPAL is a new language to model, simulate, verify and program Cyber-Physical Systems (CPS). CPAL serves to describe both the functional behaviour of activities (i.e., the code of the function itself) as well as the functional architecture of the system (i.e., the set of functions, how they are activated, and the data flows among the functions). CPAL is meant to support two use-cases. Firstly, CPAL is a development and design-space exploration environment for CPS with main features being the formal description, the editing, graphical representation and simulation of CPS models. Secondly, CPAL is a real-time execution platform. The vision behind CPAL is that a model is executed and verified in simulation mode on a workstation and the same model can be later run on an embedded board with a timing-equivalent run-time behaviour. The design and development of CPAL have been organized around a set of realistic case-studies that will be demonstrated during the demonstration session. The CPAL case studies and experiments are inspired from the research and teaching carried out at University of Luxembourg, and RTAW's projects with partner and customer companies.\",\"PeriodicalId\":338179,\"journal\":{\"name\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2016.7461329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2016.7461329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

CPAL是一种用于网络物理系统(CPS)建模、仿真、验证和编程的新语言。CPAL用于描述活动的功能行为(即,功能本身的代码)以及系统的功能架构(即,功能集,它们如何被激活,以及功能之间的数据流)。CPAL旨在支持两个用例。首先,CPAL是一个面向CPS的开发设计空间探索环境,其主要特点是对CPS模型进行形式化描述、编辑、图形化表示和仿真。其次,CPAL是一个实时执行平台。CPAL背后的愿景是在工作站的仿真模式下执行和验证模型,并且稍后可以在具有时间等效运行时行为的嵌入式板上运行相同的模型。CPAL的设计和开发是围绕一组实际的案例研究组织的,这些案例研究将在演示会议期间进行演示。CPAL案例研究和实验的灵感来自卢森堡大学的研究和教学,以及RTAW与合作伙伴和客户公司的项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demo Abstract: Applications of the CPAL Language to Model, Simulate and Program Cyber-Physical Systems
CPAL is a new language to model, simulate, verify and program Cyber-Physical Systems (CPS). CPAL serves to describe both the functional behaviour of activities (i.e., the code of the function itself) as well as the functional architecture of the system (i.e., the set of functions, how they are activated, and the data flows among the functions). CPAL is meant to support two use-cases. Firstly, CPAL is a development and design-space exploration environment for CPS with main features being the formal description, the editing, graphical representation and simulation of CPS models. Secondly, CPAL is a real-time execution platform. The vision behind CPAL is that a model is executed and verified in simulation mode on a workstation and the same model can be later run on an embedded board with a timing-equivalent run-time behaviour. The design and development of CPAL have been organized around a set of realistic case-studies that will be demonstrated during the demonstration session. The CPAL case studies and experiments are inspired from the research and teaching carried out at University of Luxembourg, and RTAW's projects with partner and customer companies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trading Cores for Memory Bandwidth in Real-Time Systems A Kernel for Energy-Neutral Real-Time Systems with Mixed Criticalities Poster Abstract: Scheduling Multi-Threaded Tasks to Reduce Intra-Task Cache Contention Demo Abstract: Predictable SoC Architecture Based on COTS Multi-Core TaskShuffler: A Schedule Randomization Protocol for Obfuscation against Timing Inference Attacks in Real-Time Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1