使用隐马尔可夫模型的马拉雅拉姆语POS标注器

Sindhya K. Nambiar, Antony Leons, Soniya Jose, Arunsree
{"title":"使用隐马尔可夫模型的马拉雅拉姆语POS标注器","authors":"Sindhya K. Nambiar, Antony Leons, Soniya Jose, Arunsree","doi":"10.1109/ICSSIT46314.2019.8987786","DOIUrl":null,"url":null,"abstract":"The NLP applications uses the parts of speech tagging as the preprocessing step. For making POS tagging accurate, various techniques have been explored. But in Indian languages, not much work has been done. This paper describes Part of Speech Tagger by incorporating Hidden Markov Model is built. Supervised learning approach is implemented in which, already tagged sentences in Malayalam is used to build Hidden Markov Model.","PeriodicalId":330309,"journal":{"name":"2019 International Conference on Smart Systems and Inventive Technology (ICSSIT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"POS Tagger for Malayalam using Hidden Markov Model\",\"authors\":\"Sindhya K. Nambiar, Antony Leons, Soniya Jose, Arunsree\",\"doi\":\"10.1109/ICSSIT46314.2019.8987786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The NLP applications uses the parts of speech tagging as the preprocessing step. For making POS tagging accurate, various techniques have been explored. But in Indian languages, not much work has been done. This paper describes Part of Speech Tagger by incorporating Hidden Markov Model is built. Supervised learning approach is implemented in which, already tagged sentences in Malayalam is used to build Hidden Markov Model.\",\"PeriodicalId\":330309,\"journal\":{\"name\":\"2019 International Conference on Smart Systems and Inventive Technology (ICSSIT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Smart Systems and Inventive Technology (ICSSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSIT46314.2019.8987786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Systems and Inventive Technology (ICSSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSIT46314.2019.8987786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

NLP应用程序使用词性标注作为预处理步骤。为了使词性标注准确,人们探索了各种技术。但在印度语言方面,还没有做太多的工作。本文介绍了结合隐马尔可夫模型构建词性标注器。在监督学习方法中,使用马拉雅拉姆语已经标记的句子来构建隐马尔可夫模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POS Tagger for Malayalam using Hidden Markov Model
The NLP applications uses the parts of speech tagging as the preprocessing step. For making POS tagging accurate, various techniques have been explored. But in Indian languages, not much work has been done. This paper describes Part of Speech Tagger by incorporating Hidden Markov Model is built. Supervised learning approach is implemented in which, already tagged sentences in Malayalam is used to build Hidden Markov Model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving End User Experience in Software Application Using a Design Scheme for Effective Exception Handling Dynamic Virtual Machine Scheduling Approach for Minimizing the Response Time Using Distance Aware Virtual Machine Scheduler in Cloud Computing Smart Carnatic Music Note Identification (CMNI) System using Probabilistic Neural Network Dynamic Heterogeneous scheduling of GPU-CPU in Distributed Environment Review on 5G Multi-Carrier MIMO-OFDM Systems using Channel Estimation Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1