用于阿尔茨海默病早期诊断的深度卷积神经网络

Maximus Liu, M. Shalaginov, Rory Liao, TingyingHelen Zeng
{"title":"用于阿尔茨海默病早期诊断的深度卷积神经网络","authors":"Maximus Liu, M. Shalaginov, Rory Liao, TingyingHelen Zeng","doi":"10.1109/IECBES54088.2022.10079301","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease is a neurologic disorder that hinders many elderly people from being able to live fulfilling lives. There is no cure for this disease, but patients can get medication to improve cognitive function. In order for patients to get more effective treatment, they need to be accurately diagnosed with the disease before it gets worse. In this research, a deep convolutional neural network was developed to predict the severity of early-stage Alzheimer’s disease based on brain MRI images. We compared several of the most commonly used pre-trained convolutional neural network architectures, such as VGG16, VGG19, InceptionV3, ResNet50, Xception, and DenseNet201. Our new finding is that VGG16 can make predictions with the highest accuracy. The neural network has been fine-tuned by varying hyperparameters to maximize the performance of the model. By connecting the output of the VGG16 model to a batch normalization layer followed by four layers of 1000 neurons with a dropout rate of 0.6 between each layer, this model achieved an accuracy of 99.68% on the testing set. While other models can distinguish between no Alzheimer’s disease and severe Alzheimer’s disease, our model can differentiate the more subtle cases of no, very mild, and mild Alzheimer’s disease. Therefore, our approach may promptly and accurately diagnose the early stages of Alzheimer’s disease and help patients to get the necessary treatment before the noticeable symptoms appear.Clinical Relevance–The proposed neural network architecture, combined with the application of the MAGMA colormap to the brain MRI images, could be used to diagnose early-stage Alzheimer’s.","PeriodicalId":146681,"journal":{"name":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Convolutional Neural Network For Early Diagnosis of Alzheimer’s Disease\",\"authors\":\"Maximus Liu, M. Shalaginov, Rory Liao, TingyingHelen Zeng\",\"doi\":\"10.1109/IECBES54088.2022.10079301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alzheimer’s disease is a neurologic disorder that hinders many elderly people from being able to live fulfilling lives. There is no cure for this disease, but patients can get medication to improve cognitive function. In order for patients to get more effective treatment, they need to be accurately diagnosed with the disease before it gets worse. In this research, a deep convolutional neural network was developed to predict the severity of early-stage Alzheimer’s disease based on brain MRI images. We compared several of the most commonly used pre-trained convolutional neural network architectures, such as VGG16, VGG19, InceptionV3, ResNet50, Xception, and DenseNet201. Our new finding is that VGG16 can make predictions with the highest accuracy. The neural network has been fine-tuned by varying hyperparameters to maximize the performance of the model. By connecting the output of the VGG16 model to a batch normalization layer followed by four layers of 1000 neurons with a dropout rate of 0.6 between each layer, this model achieved an accuracy of 99.68% on the testing set. While other models can distinguish between no Alzheimer’s disease and severe Alzheimer’s disease, our model can differentiate the more subtle cases of no, very mild, and mild Alzheimer’s disease. Therefore, our approach may promptly and accurately diagnose the early stages of Alzheimer’s disease and help patients to get the necessary treatment before the noticeable symptoms appear.Clinical Relevance–The proposed neural network architecture, combined with the application of the MAGMA colormap to the brain MRI images, could be used to diagnose early-stage Alzheimer’s.\",\"PeriodicalId\":146681,\"journal\":{\"name\":\"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECBES54088.2022.10079301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES54088.2022.10079301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病是一种神经系统疾病,它使许多老年人无法过上充实的生活。这种疾病无法治愈,但患者可以通过药物治疗来改善认知功能。为了让患者得到更有效的治疗,他们需要在病情恶化之前得到准确的诊断。在这项研究中,基于大脑MRI图像,开发了一个深度卷积神经网络来预测早期阿尔茨海默病的严重程度。我们比较了几种最常用的预训练卷积神经网络架构,如VGG16、VGG19、InceptionV3、ResNet50、Xception和DenseNet201。我们的新发现是,VGG16可以做出最高精度的预测。通过改变超参数对神经网络进行微调,使模型的性能最大化。通过将VGG16模型的输出连接到一个批处理归一化层,然后是4层1000个神经元,每层之间的dropout率为0.6,该模型在测试集上的准确率达到了99.68%。虽然其他模型可以区分无阿尔茨海默病和严重阿尔茨海默病,但我们的模型可以区分更细微的情况,即无阿尔茨海默病、非常轻微的阿尔茨海默病和轻度阿尔茨海默病。因此,我们的方法可以及时准确地诊断出阿尔茨海默病的早期阶段,并帮助患者在明显症状出现之前得到必要的治疗。临床意义-所提出的神经网络架构,结合MAGMA颜色图对大脑MRI图像的应用,可用于诊断早期阿尔茨海默氏症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Convolutional Neural Network For Early Diagnosis of Alzheimer’s Disease
Alzheimer’s disease is a neurologic disorder that hinders many elderly people from being able to live fulfilling lives. There is no cure for this disease, but patients can get medication to improve cognitive function. In order for patients to get more effective treatment, they need to be accurately diagnosed with the disease before it gets worse. In this research, a deep convolutional neural network was developed to predict the severity of early-stage Alzheimer’s disease based on brain MRI images. We compared several of the most commonly used pre-trained convolutional neural network architectures, such as VGG16, VGG19, InceptionV3, ResNet50, Xception, and DenseNet201. Our new finding is that VGG16 can make predictions with the highest accuracy. The neural network has been fine-tuned by varying hyperparameters to maximize the performance of the model. By connecting the output of the VGG16 model to a batch normalization layer followed by four layers of 1000 neurons with a dropout rate of 0.6 between each layer, this model achieved an accuracy of 99.68% on the testing set. While other models can distinguish between no Alzheimer’s disease and severe Alzheimer’s disease, our model can differentiate the more subtle cases of no, very mild, and mild Alzheimer’s disease. Therefore, our approach may promptly and accurately diagnose the early stages of Alzheimer’s disease and help patients to get the necessary treatment before the noticeable symptoms appear.Clinical Relevance–The proposed neural network architecture, combined with the application of the MAGMA colormap to the brain MRI images, could be used to diagnose early-stage Alzheimer’s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional Connectivity Based Classification for Autism Spectrum Disorder Using Spearman’s Rank Correlation Vector-Quantized Zero-Delay Deep Autoencoders for the Compression of Electrical Stimulation Patterns of Cochlear Implants using STOI Depression Detection on Malay Dialects Using GPT-3 Mechanical Noise Affects Rambling and Trembling Trajectories During Quiet Standing Effect Of Shoe Cushioning Hardness to Running Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1