面向主体的自修复智能电网设计

Steve Bou Ghosn, P. Ranganathan, Saeed Salem, Jingpeng Tang, D. Loegering, K. Nygard
{"title":"面向主体的自修复智能电网设计","authors":"Steve Bou Ghosn, P. Ranganathan, Saeed Salem, Jingpeng Tang, D. Loegering, K. Nygard","doi":"10.1109/SMARTGRID.2010.5622085","DOIUrl":null,"url":null,"abstract":"Electrical grids are highly complex and dynamic systems that can be unreliable, insecure, and inefficient in serving end consumers. The promise of Smart Grids lies in the architecting and developing of intelligent distributed and networked systems for automated monitoring and controlling of the grid to improve performance. We have designed an agent-oriented architecture for a simulation which can help in understanding Smart Grid issues and in identifying ways to improve the electrical grid. We focus primarily on the self-healing problem, which concerns methodologies for activating control solutions to take preventative actions or to handle problems after they occur. We present software design issues that must be considered in producing a system that is flexible, adaptable and scalable. Agent-based systems provide a paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated computer programs that can act autonomously and communicate with each other across open and distributed environments. We present design issues that are appropriate in developing a Multi-agent System (MAS) for the grid. Our MAS is implemented in the Java Agent Development Framework (JADE). Our Smart Grid Simulation uses many types of agents to acquire and monitor data, support decision making, and represent devices, controls, alternative power sources, the environment, management functions, and user interfaces.","PeriodicalId":106908,"journal":{"name":"2010 First IEEE International Conference on Smart Grid Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Agent-Oriented Designs for a Self Healing Smart Grid\",\"authors\":\"Steve Bou Ghosn, P. Ranganathan, Saeed Salem, Jingpeng Tang, D. Loegering, K. Nygard\",\"doi\":\"10.1109/SMARTGRID.2010.5622085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical grids are highly complex and dynamic systems that can be unreliable, insecure, and inefficient in serving end consumers. The promise of Smart Grids lies in the architecting and developing of intelligent distributed and networked systems for automated monitoring and controlling of the grid to improve performance. We have designed an agent-oriented architecture for a simulation which can help in understanding Smart Grid issues and in identifying ways to improve the electrical grid. We focus primarily on the self-healing problem, which concerns methodologies for activating control solutions to take preventative actions or to handle problems after they occur. We present software design issues that must be considered in producing a system that is flexible, adaptable and scalable. Agent-based systems provide a paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated computer programs that can act autonomously and communicate with each other across open and distributed environments. We present design issues that are appropriate in developing a Multi-agent System (MAS) for the grid. Our MAS is implemented in the Java Agent Development Framework (JADE). Our Smart Grid Simulation uses many types of agents to acquire and monitor data, support decision making, and represent devices, controls, alternative power sources, the environment, management functions, and user interfaces.\",\"PeriodicalId\":106908,\"journal\":{\"name\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTGRID.2010.5622085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 First IEEE International Conference on Smart Grid Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTGRID.2010.5622085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

电网是高度复杂和动态的系统,在为终端用户服务时可能不可靠、不安全、效率低下。智能电网的前景在于构建和开发智能分布式和网络化系统,用于自动监测和控制电网,以提高其性能。我们为模拟设计了一个面向代理的体系结构,它可以帮助理解智能电网问题,并确定改进电网的方法。我们主要关注自愈问题,它涉及激活控制解决方案的方法,以采取预防措施或在问题发生后处理问题。我们提出的软件设计问题,必须考虑在生产一个系统是灵活的,可适应的和可扩展的。基于代理的系统为概念化、设计和实现软件系统提供了一个范例。代理是复杂的计算机程序,可以自主行动,并在开放和分布式环境中相互通信。我们提出了适合于为网格开发多智能体系统(MAS)的设计问题。我们的MAS是在Java代理开发框架(JADE)中实现的。我们的智能电网仿真使用多种类型的代理来获取和监控数据,支持决策制定,并表示设备,控制,替代电源,环境,管理功能和用户界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Agent-Oriented Designs for a Self Healing Smart Grid
Electrical grids are highly complex and dynamic systems that can be unreliable, insecure, and inefficient in serving end consumers. The promise of Smart Grids lies in the architecting and developing of intelligent distributed and networked systems for automated monitoring and controlling of the grid to improve performance. We have designed an agent-oriented architecture for a simulation which can help in understanding Smart Grid issues and in identifying ways to improve the electrical grid. We focus primarily on the self-healing problem, which concerns methodologies for activating control solutions to take preventative actions or to handle problems after they occur. We present software design issues that must be considered in producing a system that is flexible, adaptable and scalable. Agent-based systems provide a paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated computer programs that can act autonomously and communicate with each other across open and distributed environments. We present design issues that are appropriate in developing a Multi-agent System (MAS) for the grid. Our MAS is implemented in the Java Agent Development Framework (JADE). Our Smart Grid Simulation uses many types of agents to acquire and monitor data, support decision making, and represent devices, controls, alternative power sources, the environment, management functions, and user interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spectrum for Smart Grid: Policy Recommendations Enabling Current and Future Applications Privacy for Smart Meters: Towards Undetectable Appliance Load Signatures Quality of Service Networking for Smart Grid Distribution Monitoring The POWER of Networking: How Networking Can Help Power Management Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1