阴道功率多普勒参数作为细胞质内精子注射结果的新预测指标

Zeinab Abbas, C. Fakih, Ali Saad, M. Ayache
{"title":"阴道功率多普勒参数作为细胞质内精子注射结果的新预测指标","authors":"Zeinab Abbas, C. Fakih, Ali Saad, M. Ayache","doi":"10.1109/ACIT.2018.8672713","DOIUrl":null,"url":null,"abstract":"Intra-Cytoplasmic Sperm Injection (ICSI) represents the best chance to have a baby for couples that have an infertility problem. ICSI treatment is expensive, and there are a number of factors affecting the success of the treatment. This work is mainly aimed to classify and predict the ICSI treatment results using (1) the classical statistical study, (i.e. logistic regression) and (2) the artificial intelligence (i.e. Neural Networks). For this purpose, data are extracted from real patients. The data contain parameters such as the age, the endometrial receptivity, the endometrial and myometrial vascularity index, number of embryo transfer, the day of transfer, and the quality of embryo transferred. These parameters may affect the result of the ICSI treatment. Overall, the logistic regression predicts the output of the ICSI outcome with an accuracy of 75%. In other parts, the neural network managed to achieve an accuracy of 79.5% with all parameters and 75% with only the significant parameters.","PeriodicalId":443170,"journal":{"name":"2018 International Arab Conference on Information Technology (ACIT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vaginal Power Doppler Parameters as New Predictors of Intra-Cytoplasmic Sperm Injection Outcome\",\"authors\":\"Zeinab Abbas, C. Fakih, Ali Saad, M. Ayache\",\"doi\":\"10.1109/ACIT.2018.8672713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intra-Cytoplasmic Sperm Injection (ICSI) represents the best chance to have a baby for couples that have an infertility problem. ICSI treatment is expensive, and there are a number of factors affecting the success of the treatment. This work is mainly aimed to classify and predict the ICSI treatment results using (1) the classical statistical study, (i.e. logistic regression) and (2) the artificial intelligence (i.e. Neural Networks). For this purpose, data are extracted from real patients. The data contain parameters such as the age, the endometrial receptivity, the endometrial and myometrial vascularity index, number of embryo transfer, the day of transfer, and the quality of embryo transferred. These parameters may affect the result of the ICSI treatment. Overall, the logistic regression predicts the output of the ICSI outcome with an accuracy of 75%. In other parts, the neural network managed to achieve an accuracy of 79.5% with all parameters and 75% with only the significant parameters.\",\"PeriodicalId\":443170,\"journal\":{\"name\":\"2018 International Arab Conference on Information Technology (ACIT)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIT.2018.8672713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT.2018.8672713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

胞浆内精子注射(ICSI)是有不孕问题的夫妇生育孩子的最佳机会。ICSI治疗是昂贵的,有许多因素影响治疗的成功。本工作主要是利用(1)经典统计研究(即逻辑回归)和(2)人工智能(即神经网络)对ICSI治疗结果进行分类和预测。为此,数据是从真实患者中提取的。数据包括年龄、子宫内膜容受性、子宫内膜和子宫肌层血管指数、胚胎移植数量、移植日期和胚胎移植质量等参数。这些参数可能会影响ICSI治疗的结果。总体而言,逻辑回归预测ICSI结果输出的准确率为75%。在其他部分,神经网络在所有参数下的准确率为79.5%,仅在重要参数下的准确率为75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vaginal Power Doppler Parameters as New Predictors of Intra-Cytoplasmic Sperm Injection Outcome
Intra-Cytoplasmic Sperm Injection (ICSI) represents the best chance to have a baby for couples that have an infertility problem. ICSI treatment is expensive, and there are a number of factors affecting the success of the treatment. This work is mainly aimed to classify and predict the ICSI treatment results using (1) the classical statistical study, (i.e. logistic regression) and (2) the artificial intelligence (i.e. Neural Networks). For this purpose, data are extracted from real patients. The data contain parameters such as the age, the endometrial receptivity, the endometrial and myometrial vascularity index, number of embryo transfer, the day of transfer, and the quality of embryo transferred. These parameters may affect the result of the ICSI treatment. Overall, the logistic regression predicts the output of the ICSI outcome with an accuracy of 75%. In other parts, the neural network managed to achieve an accuracy of 79.5% with all parameters and 75% with only the significant parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature Selection for Android Keystroke Dynamics Proposed Method for Automatic Segmentation of Medical Images Feature-Based Opinion Summarization for Arabic Reviews Arabic Semantic Similarity Approaches - Review IoT: Architecture, Challenges, and Solutions Using Fog Network and Application Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1