基于ParAdapt和CUDA的多变量集成的可扩展算法

O. Olagbemi, E. de Doncker
{"title":"基于ParAdapt和CUDA的多变量集成的可扩展算法","authors":"O. Olagbemi, E. de Doncker","doi":"10.1109/CSCI49370.2019.00093","DOIUrl":null,"url":null,"abstract":"ParAdapt is a numerical integration software based on a classic global adaptive algorithm, which employs GPUs in providing integral evaluations. Based on adaptive region partitioning strategies developed for efficient integration and mapping to GPUs, ParAdapt renders the framework of the global adaptive scheme suitable for general functions in moderate dimensions, say 10 to 25. Speedup values achieved are in the double and triple digits up to very large numbers of subdivisions. While sequential adaptive strategies are generally considered effective for integral dimensions through about 10 or 12, it is our goal to move this threshold up considerably.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scalable Algorithms for Multivariate Integration with ParAdapt and CUDA\",\"authors\":\"O. Olagbemi, E. de Doncker\",\"doi\":\"10.1109/CSCI49370.2019.00093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ParAdapt is a numerical integration software based on a classic global adaptive algorithm, which employs GPUs in providing integral evaluations. Based on adaptive region partitioning strategies developed for efficient integration and mapping to GPUs, ParAdapt renders the framework of the global adaptive scheme suitable for general functions in moderate dimensions, say 10 to 25. Speedup values achieved are in the double and triple digits up to very large numbers of subdivisions. While sequential adaptive strategies are generally considered effective for integral dimensions through about 10 or 12, it is our goal to move this threshold up considerably.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

ParAdapt是一款基于经典全局自适应算法的数值积分软件,采用gpu提供积分计算。ParAdapt基于为高效集成和映射到gpu而开发的自适应区域划分策略,使全局自适应方案的框架适用于中等维度(例如10到25)的一般功能。在非常大的细分范围内,实现的加速值为两位数和三位数。虽然顺序自适应策略通常被认为对10或12个整体维度有效,但我们的目标是将这个阈值大幅提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable Algorithms for Multivariate Integration with ParAdapt and CUDA
ParAdapt is a numerical integration software based on a classic global adaptive algorithm, which employs GPUs in providing integral evaluations. Based on adaptive region partitioning strategies developed for efficient integration and mapping to GPUs, ParAdapt renders the framework of the global adaptive scheme suitable for general functions in moderate dimensions, say 10 to 25. Speedup values achieved are in the double and triple digits up to very large numbers of subdivisions. While sequential adaptive strategies are generally considered effective for integral dimensions through about 10 or 12, it is our goal to move this threshold up considerably.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Long Short Term Memory Networks Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference Uncovering Los Angeles Tourists' Patterns Using Geospatial Analysis and Supervised Machine Learning with Random Forest Predictors A Framework for Leveraging Business Intelligence to Manage Transactional Data Flows between Private Healthcare Providers and Medical Aid Administrators Feasibility Study of a Consumer Multi-Sensory Wristband to Monitor Sleep Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1