{"title":"HEP实验电子学低功率辐射硬芦苇-所罗门码保护的65纳米串行化器的特性","authors":"D. Felici, S. Bonacini, M. Ottavi","doi":"10.1109/DFT.2015.7315160","DOIUrl":null,"url":null,"abstract":"The availability of low-power, radiation-resistant components has an enormous importance in the development of the electronic systems for modern detectors in a High Energy Physics (HEP) experiment. This paper describes the characterization in terms of radiation effects of two serializer blocks within a high speed transmitter, prior developed with the objective of achieving a power consumption of less than 30 mW at the operating speed of 4.8 Gbit/sec. Within the first serializer, called “simple TMR”, a traditional solution, based on the hardware redundancy, has been implemented. In the second case a new architecture, less power consuming, called “code protected”, has been proposed. The tests previously performed shown an average consumption of ~30 mW and ~19 mW, respectively, for a bit rate of 4.8 Gbit/sec but do not fully clarify if the blocks are suitable for working under extremely high radiation levels. Hence, a deep radiation hardness investigation has been performed and presented here to confirm the availability of these blocks in a HEP electronic system. SEU sensitivities are measured and bit error rates better than 2 E-15 are obtained, confirming that the “code protected” solution assures reliable communications in HEP experiments environment with a smaller power consumption. These blocks have also been designed and tested to cope with a total ionizing dose of 100 Mrad over 10 years of operation.","PeriodicalId":383972,"journal":{"name":"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterization of low power radiation-hard reed-solomon code protected serializers in 65-nm for HEP experiments electronics\",\"authors\":\"D. Felici, S. Bonacini, M. Ottavi\",\"doi\":\"10.1109/DFT.2015.7315160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of low-power, radiation-resistant components has an enormous importance in the development of the electronic systems for modern detectors in a High Energy Physics (HEP) experiment. This paper describes the characterization in terms of radiation effects of two serializer blocks within a high speed transmitter, prior developed with the objective of achieving a power consumption of less than 30 mW at the operating speed of 4.8 Gbit/sec. Within the first serializer, called “simple TMR”, a traditional solution, based on the hardware redundancy, has been implemented. In the second case a new architecture, less power consuming, called “code protected”, has been proposed. The tests previously performed shown an average consumption of ~30 mW and ~19 mW, respectively, for a bit rate of 4.8 Gbit/sec but do not fully clarify if the blocks are suitable for working under extremely high radiation levels. Hence, a deep radiation hardness investigation has been performed and presented here to confirm the availability of these blocks in a HEP electronic system. SEU sensitivities are measured and bit error rates better than 2 E-15 are obtained, confirming that the “code protected” solution assures reliable communications in HEP experiments environment with a smaller power consumption. These blocks have also been designed and tested to cope with a total ionizing dose of 100 Mrad over 10 years of operation.\",\"PeriodicalId\":383972,\"journal\":{\"name\":\"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2015.7315160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2015.7315160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of low power radiation-hard reed-solomon code protected serializers in 65-nm for HEP experiments electronics
The availability of low-power, radiation-resistant components has an enormous importance in the development of the electronic systems for modern detectors in a High Energy Physics (HEP) experiment. This paper describes the characterization in terms of radiation effects of two serializer blocks within a high speed transmitter, prior developed with the objective of achieving a power consumption of less than 30 mW at the operating speed of 4.8 Gbit/sec. Within the first serializer, called “simple TMR”, a traditional solution, based on the hardware redundancy, has been implemented. In the second case a new architecture, less power consuming, called “code protected”, has been proposed. The tests previously performed shown an average consumption of ~30 mW and ~19 mW, respectively, for a bit rate of 4.8 Gbit/sec but do not fully clarify if the blocks are suitable for working under extremely high radiation levels. Hence, a deep radiation hardness investigation has been performed and presented here to confirm the availability of these blocks in a HEP electronic system. SEU sensitivities are measured and bit error rates better than 2 E-15 are obtained, confirming that the “code protected” solution assures reliable communications in HEP experiments environment with a smaller power consumption. These blocks have also been designed and tested to cope with a total ionizing dose of 100 Mrad over 10 years of operation.