用于机器学习的人类加速度计数据的内在特性

T. Lee, H. W. Chan, K. Leo, E. Chew, Ling Zhao, Saeid Sanei
{"title":"用于机器学习的人类加速度计数据的内在特性","authors":"T. Lee, H. W. Chan, K. Leo, E. Chew, Ling Zhao, Saeid Sanei","doi":"10.1109/SSP53291.2023.10207963","DOIUrl":null,"url":null,"abstract":"Time series data is often processed to extract features which better explain the sources and structure of the data. However, these processes make underlying assumptions about the nature of the time series. Two important intrinsic properties are the linearity and stationarity of the data. The large corpora on time series analyses include domains of economics, physics and engineering – thus cross domain approaches can yield useful insights into the data. Here we look at data from accelerometers, an important class of sensors. We employ widely used time series tests to provide novel analyses to establish their linear and stationary structure. This provides useful insights into the underlying processes which are being sensed and guide the type of temporal features, any preprocessing needed and suitable analyses to be performed. We briefly mention the use of this in a machine learning application.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsic Properties of Human Accelerometer Data for Machine Learning\",\"authors\":\"T. Lee, H. W. Chan, K. Leo, E. Chew, Ling Zhao, Saeid Sanei\",\"doi\":\"10.1109/SSP53291.2023.10207963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series data is often processed to extract features which better explain the sources and structure of the data. However, these processes make underlying assumptions about the nature of the time series. Two important intrinsic properties are the linearity and stationarity of the data. The large corpora on time series analyses include domains of economics, physics and engineering – thus cross domain approaches can yield useful insights into the data. Here we look at data from accelerometers, an important class of sensors. We employ widely used time series tests to provide novel analyses to establish their linear and stationary structure. This provides useful insights into the underlying processes which are being sensed and guide the type of temporal features, any preprocessing needed and suitable analyses to be performed. We briefly mention the use of this in a machine learning application.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10207963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通常对时间序列数据进行处理,以提取能够更好地解释数据来源和结构的特征。然而,这些过程对时间序列的性质做出了潜在的假设。两个重要的内在性质是数据的线性和平稳性。时间序列分析的大型语料库包括经济学、物理学和工程学领域,因此跨领域的方法可以对数据产生有用的见解。这里我们看一下加速度计的数据,加速度计是一类重要的传感器。我们采用广泛使用的时间序列检验提供新的分析,以建立其线性和平稳结构。这为被感知的潜在过程提供了有用的见解,并指导了时间特征的类型,所需的任何预处理和要执行的适当分析。我们简要地提到它在机器学习应用程序中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intrinsic Properties of Human Accelerometer Data for Machine Learning
Time series data is often processed to extract features which better explain the sources and structure of the data. However, these processes make underlying assumptions about the nature of the time series. Two important intrinsic properties are the linearity and stationarity of the data. The large corpora on time series analyses include domains of economics, physics and engineering – thus cross domain approaches can yield useful insights into the data. Here we look at data from accelerometers, an important class of sensors. We employ widely used time series tests to provide novel analyses to establish their linear and stationary structure. This provides useful insights into the underlying processes which are being sensed and guide the type of temporal features, any preprocessing needed and suitable analyses to be performed. We briefly mention the use of this in a machine learning application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1