一种用于人体活动识别的双层自动方向校正方法

Xiaoxu Wu, Xiaoyu Xu, Yan Wang, W. Kaiser, G. Pottie
{"title":"一种用于人体活动识别的双层自动方向校正方法","authors":"Xiaoxu Wu, Xiaoyu Xu, Yan Wang, W. Kaiser, G. Pottie","doi":"10.1109/BSN.2016.7516289","DOIUrl":null,"url":null,"abstract":"Human activity monitoring systems using inertial sensors have found wide applications in the field of health and wellness by providing valuable information for diagnostics and rehabilitation processes to doctors and clinicians. As the scales of studies increase, sensor orientation placement errors have become one of the most commonly seen difficulties for such systems. Assuming patients to wear sensors at the correct orientation is unrealistic and will result in a large amount of data loss or distortion. In order to tackle this problem, we propose a double layer classification model. The first layer, not assuming correct sensor orientation, uses orientation-invariant accelerometer magnitude to construct a highly conservative walking detection model. The detected walking beacons from this layer are used to compare to the training template to obtain the true sensor orientation. Then proper rotation matrix can be applied to the whole day data, and fed into the second layer of a finer classifier where orientation-variant features are used. In order to show validity of this method, we hired 7 healthy subjects and 2 stroke patients in the rehab process to wear the sensors for two days and at least 6 hours each day. Ground truth are labeled manually with a Matlab GUI tool. Precision and recall for walking detection in each day are reported and discussed.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A double-layer automatic orientation correction method for human activity recognition\",\"authors\":\"Xiaoxu Wu, Xiaoyu Xu, Yan Wang, W. Kaiser, G. Pottie\",\"doi\":\"10.1109/BSN.2016.7516289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activity monitoring systems using inertial sensors have found wide applications in the field of health and wellness by providing valuable information for diagnostics and rehabilitation processes to doctors and clinicians. As the scales of studies increase, sensor orientation placement errors have become one of the most commonly seen difficulties for such systems. Assuming patients to wear sensors at the correct orientation is unrealistic and will result in a large amount of data loss or distortion. In order to tackle this problem, we propose a double layer classification model. The first layer, not assuming correct sensor orientation, uses orientation-invariant accelerometer magnitude to construct a highly conservative walking detection model. The detected walking beacons from this layer are used to compare to the training template to obtain the true sensor orientation. Then proper rotation matrix can be applied to the whole day data, and fed into the second layer of a finer classifier where orientation-variant features are used. In order to show validity of this method, we hired 7 healthy subjects and 2 stroke patients in the rehab process to wear the sensors for two days and at least 6 hours each day. Ground truth are labeled manually with a Matlab GUI tool. Precision and recall for walking detection in each day are reported and discussed.\",\"PeriodicalId\":205735,\"journal\":{\"name\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2016.7516289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

使用惯性传感器的人体活动监测系统通过向医生和临床医生提供诊断和康复过程的宝贵信息,在卫生和保健领域得到了广泛应用。随着研究规模的扩大,传感器定位误差已成为此类系统最常见的困难之一。假设患者在正确的方向上佩戴传感器是不现实的,会导致大量数据丢失或失真。为了解决这个问题,我们提出了一个双层分类模型。第一层没有假设正确的传感器方向,使用方向不变的加速度计大小来构建高度保守的步行检测模型。从该层检测到的行走信标用于与训练模板进行比较,以获得真实的传感器方向。然后将适当的旋转矩阵应用于全天数据,并将其输入更精细分类器的第二层,其中使用了方向变化特征。为了证明该方法的有效性,我们聘请了7名健康受试者和2名正在康复过程中的脑卒中患者,让他们连续两天每天佩戴传感器至少6小时。Ground truth用Matlab GUI工具手动标记。报告并讨论了每天步行检测的准确率和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A double-layer automatic orientation correction method for human activity recognition
Human activity monitoring systems using inertial sensors have found wide applications in the field of health and wellness by providing valuable information for diagnostics and rehabilitation processes to doctors and clinicians. As the scales of studies increase, sensor orientation placement errors have become one of the most commonly seen difficulties for such systems. Assuming patients to wear sensors at the correct orientation is unrealistic and will result in a large amount of data loss or distortion. In order to tackle this problem, we propose a double layer classification model. The first layer, not assuming correct sensor orientation, uses orientation-invariant accelerometer magnitude to construct a highly conservative walking detection model. The detected walking beacons from this layer are used to compare to the training template to obtain the true sensor orientation. Then proper rotation matrix can be applied to the whole day data, and fed into the second layer of a finer classifier where orientation-variant features are used. In order to show validity of this method, we hired 7 healthy subjects and 2 stroke patients in the rehab process to wear the sensors for two days and at least 6 hours each day. Ground truth are labeled manually with a Matlab GUI tool. Precision and recall for walking detection in each day are reported and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edemeter: Wearable and continuous fluid retention monitoring Probabilistic sensor network design Tracking body core temperature in military thermal environments: An extended Kalman filter approach A multimodal sensor system for automated marmoset behavioral analysis Accurate personal ultraviolet dose estimation with multiple wearable sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1