{"title":"一种无监督形态分词的研究","authors":"Lulamile Mzamo, A.S. Helberg, Sonja E. Bosch","doi":"10.1109/ROBOMECH.2019.8704816]","DOIUrl":null,"url":null,"abstract":"In this paper, branching entropy techniques and isiXhosa language heuristics are adapted to develop unsupervised morphological segmenters for isiXhosa. An overview of isiXhosa segmentation issues is given, followed by a discussion on previous work in automated segmentation, and segmentation of isiXhosa in particular. Two unsupervised isiXhosa segmenters are presented and compared to a random minimum baseline and Morfessor-Baseline, a standard in unsupervised word segmentation. Morfessor-Baseline outperforms both isiXhosa segmenters at 79.10% boundary identification accuracy. The IsiXhosa Branching Entropy Segmenter (XBES) performance varies depending on the segmentation mode used, with a maximum of 73.39%. The IsiXhosa Heuristic Maximum Likelihood Segmenter (XHMLS) achieves 72.42%. The study suggests that unsupervised isiXhosa morphological segmentation is feasible with better optimization of the current attempts.","PeriodicalId":344332,"journal":{"name":"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards an unsupervised morphological segmenter for isiXhosa\",\"authors\":\"Lulamile Mzamo, A.S. Helberg, Sonja E. Bosch\",\"doi\":\"10.1109/ROBOMECH.2019.8704816]\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, branching entropy techniques and isiXhosa language heuristics are adapted to develop unsupervised morphological segmenters for isiXhosa. An overview of isiXhosa segmentation issues is given, followed by a discussion on previous work in automated segmentation, and segmentation of isiXhosa in particular. Two unsupervised isiXhosa segmenters are presented and compared to a random minimum baseline and Morfessor-Baseline, a standard in unsupervised word segmentation. Morfessor-Baseline outperforms both isiXhosa segmenters at 79.10% boundary identification accuracy. The IsiXhosa Branching Entropy Segmenter (XBES) performance varies depending on the segmentation mode used, with a maximum of 73.39%. The IsiXhosa Heuristic Maximum Likelihood Segmenter (XHMLS) achieves 72.42%. The study suggests that unsupervised isiXhosa morphological segmentation is feasible with better optimization of the current attempts.\",\"PeriodicalId\":344332,\"journal\":{\"name\":\"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOMECH.2019.8704816]\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOMECH.2019.8704816]","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文采用分支熵技术和isiXhosa语言启发式方法来开发isiXhosa语言的无监督形态分词。概述了isiXhosa分割问题,然后讨论了以前在自动分割方面的工作,特别是isiXhosa分割。提出了两个无监督isiXhosa分词器,并将其与随机最小基线和无监督分词标准Morfessor-Baseline进行了比较。morprof - baseline以79.10%的边界识别准确率优于两种isiXhosa分割器。IsiXhosa分支熵分割器(XBES)的性能根据所使用的分割模式而变化,最高可达73.39%。IsiXhosa启发式最大似然分割(XHMLS)达到72.42%。研究表明,通过对现有方法的优化,无监督isiXhosa形态学分割是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards an unsupervised morphological segmenter for isiXhosa
In this paper, branching entropy techniques and isiXhosa language heuristics are adapted to develop unsupervised morphological segmenters for isiXhosa. An overview of isiXhosa segmentation issues is given, followed by a discussion on previous work in automated segmentation, and segmentation of isiXhosa in particular. Two unsupervised isiXhosa segmenters are presented and compared to a random minimum baseline and Morfessor-Baseline, a standard in unsupervised word segmentation. Morfessor-Baseline outperforms both isiXhosa segmenters at 79.10% boundary identification accuracy. The IsiXhosa Branching Entropy Segmenter (XBES) performance varies depending on the segmentation mode used, with a maximum of 73.39%. The IsiXhosa Heuristic Maximum Likelihood Segmenter (XHMLS) achieves 72.42%. The study suggests that unsupervised isiXhosa morphological segmentation is feasible with better optimization of the current attempts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed Framework for Programming the Artificial Intelligence of Mobile Robots in Smart Manufacturing Systems Multi-Class Weather Classification from Still Image Using Said Ensemble Method Three-Phase Five-Limb Transformer Harmonic Analysis under DC-bias Modelling of a MMC HVDC Link between Koeberg Power Station and Cape Town - Experiences in simulation Comparison Between A Three and Two Level Inverter Variable Flux Machine Drives For Traction Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1