生成准确的图片标题单位

Xin Qian, Eunyee Koh, F. Du, Sungchul Kim, Joel Chan, Ryan A. Rossi, Sana Malik, Tak Yeon Lee
{"title":"生成准确的图片标题单位","authors":"Xin Qian, Eunyee Koh, F. Du, Sungchul Kim, Joel Chan, Ryan A. Rossi, Sana Malik, Tak Yeon Lee","doi":"10.1145/3442381.3449923","DOIUrl":null,"url":null,"abstract":"Scientific-style figures are commonly used on the web to present numerical information. Captions that tell accurate figure information and sound natural would significantly improve figure accessibility. In this paper, we present promising results on machine figure captioning. A recent corpus analysis of real-world captions reveals that machine figure captioning systems should start by generating accurate caption units. We formulate the caption unit generation problem as a controlled captioning problem. Given a caption unit type as a control signal, a model generates an accurate caption unit of that type. As a proof-of-concept on single bar charts, we propose a model, FigJAM, that achieves this goal through utilizing metadata information and a joint static and dynamic dictionary. Quantitative evaluations with two datasets from the figure question answering task show that our model can generate more accurate caption units than competitive baseline models. A user study with ten human experts confirms the value of machine-generated caption units in their standalone accuracy and naturalness. Finally, a post-editing simulation study demonstrates the potential for models to paraphrase and stitch together single-type caption units into multi-type captions by learning from data.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Generating Accurate Caption Units for Figure Captioning\",\"authors\":\"Xin Qian, Eunyee Koh, F. Du, Sungchul Kim, Joel Chan, Ryan A. Rossi, Sana Malik, Tak Yeon Lee\",\"doi\":\"10.1145/3442381.3449923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific-style figures are commonly used on the web to present numerical information. Captions that tell accurate figure information and sound natural would significantly improve figure accessibility. In this paper, we present promising results on machine figure captioning. A recent corpus analysis of real-world captions reveals that machine figure captioning systems should start by generating accurate caption units. We formulate the caption unit generation problem as a controlled captioning problem. Given a caption unit type as a control signal, a model generates an accurate caption unit of that type. As a proof-of-concept on single bar charts, we propose a model, FigJAM, that achieves this goal through utilizing metadata information and a joint static and dynamic dictionary. Quantitative evaluations with two datasets from the figure question answering task show that our model can generate more accurate caption units than competitive baseline models. A user study with ten human experts confirms the value of machine-generated caption units in their standalone accuracy and naturalness. Finally, a post-editing simulation study demonstrates the potential for models to paraphrase and stitch together single-type caption units into multi-type captions by learning from data.\",\"PeriodicalId\":106672,\"journal\":{\"name\":\"Proceedings of the Web Conference 2021\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442381.3449923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

科学风格的图形通常用于网络上表示数字信息。说明文字说明准确的图形信息和声音自然将显著提高图形的可访问性。在本文中,我们在机器图形标注方面取得了可喜的成果。最近对现实世界标题的语料库分析表明,机器图形标题系统应该从生成准确的标题单元开始。我们将标题单元生成问题表述为受控标题问题。给定标题单元类型作为控制信号,模型生成该类型的准确标题单元。作为单条形图的概念验证,我们提出了一个模型FigJAM,它通过利用元数据信息和一个联合的静态和动态字典来实现这一目标。对来自图形问答任务的两个数据集的定量评估表明,我们的模型比竞争对手的基线模型可以生成更准确的标题单元。一项由10位人类专家参与的用户研究证实了机器生成的标题单元在其独立的准确性和自然性方面的价值。最后,一项后期编辑模拟研究表明,通过从数据中学习,模型有可能将单一类型的字幕单元改写并拼接成多类型的字幕。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating Accurate Caption Units for Figure Captioning
Scientific-style figures are commonly used on the web to present numerical information. Captions that tell accurate figure information and sound natural would significantly improve figure accessibility. In this paper, we present promising results on machine figure captioning. A recent corpus analysis of real-world captions reveals that machine figure captioning systems should start by generating accurate caption units. We formulate the caption unit generation problem as a controlled captioning problem. Given a caption unit type as a control signal, a model generates an accurate caption unit of that type. As a proof-of-concept on single bar charts, we propose a model, FigJAM, that achieves this goal through utilizing metadata information and a joint static and dynamic dictionary. Quantitative evaluations with two datasets from the figure question answering task show that our model can generate more accurate caption units than competitive baseline models. A user study with ten human experts confirms the value of machine-generated caption units in their standalone accuracy and naturalness. Finally, a post-editing simulation study demonstrates the potential for models to paraphrase and stitch together single-type caption units into multi-type captions by learning from data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service Outlier-Resilient Web Service QoS Prediction Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy Unsupervised Lifelong Learning with Curricula The Structure of Toxic Conversations on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1